Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

HIPK2 suppresses tumor growth and progression of hepatocellular carcinoma through promoting the degradation of HIF-1α

Abstract

Aberrant angiogenesis of hepatocellular carcinoma (HCC) leads to tumor growth and local or distant metastasis. Uncovering the underlying mechanisms for the neoangiogenesis of HCC can provide novel potential therapeutic targets in the clinic. Here, we reported that serine/threonine homeodomain-interacting protein kinase 2 (HIPK2) was frequently downregulated in HCC tissues compared with the adjacent normal tissues, and patients with lower HIPK2 protein expression were associated with worse overall survival. Both in vitro and in vivo, HIPK2 inhibited the migration of HCC cells, as well as tumor growth and metastasis in xenograft and orthotopic syngeneic HCC mouse models. Furthermore, HIPK2 inhibited the angiogenesis in HCC tumors. Under the hypoxic condition, HIPK2 knockdown enhanced the angiogenesis and the key regulator, HIF-1α signaling pathway; however, HIPK2 overexpression downregulated the tumoral angiogenesis and HIF-1α signaling. In HCC cells, HIPK2 could directly bind to HIF-1α and stimulate the ubiquitination of HIF-1α for proteasomal degradation. HIF-1α knockout partially rescued the promoting effect of HIPK2 depletion on angiogenesis and tumor growth. In conclusion, the downregulation of HIPK2 could enhance the angiogenesis in HCC through inducing the HIF-1α pathway, and further contribute to tumor growth and metastasis, which may provide a novel therapeutic strategy for HCC.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: HIPK2 is downregulated in HCC tissues compared with normal tissues and is associated with the overall survival of HCC patients.
Fig. 2: HIPK2 inhibits the tumor growth and distant metastasis of HCC in vivo.
Fig. 3: HIPK2 inhibits the metastasis of HCC cells in vitro and in vivo.
Fig. 4: HIPK2 inhibits the angiogenesis of the HCC cells under the hypoxia condition.
Fig. 5: HIPK2 stimulated HIF-1α degradation through the ubiquitin-proteasome pathway.
Fig. 6: HIF-1α signaling pathway underlies the tumor suppressor actives of HIPK2 in HCC.

Similar content being viewed by others

References

  1. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018;68:394–424.

    PubMed  Google Scholar 

  2. McGlynn KA, London WT. The global epidemiology of hepatocellular carcinoma: present and future. Clin Liver Dis. 2011;15:223–43. vii-x

    Article  PubMed  PubMed Central  Google Scholar 

  3. Clark T, Maximin S, Meier J, Pokharel S, Bhargava P. Hepatocellular carcinoma: review of epidemiology, screening, imaging diagnosis, response assessment, and treatment. Curr Probl Diagn Radiol. 2015;44:479–86.

    Article  PubMed  Google Scholar 

  4. Guan YS, He Q, Wang MQ. Transcatheter arterial chemoembolization: history for more than 30 years. ISRN Gastroenterol. 2012;2012:480650.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Llovet JM, Ricci S, Mazzaferro V, Hilgard P, Gane E, Blanc JF, et al. Sorafenib in advanced hepatocellular carcinoma. N Engl J Med. 2008;359:378–90.

    Article  CAS  PubMed  Google Scholar 

  6. Hofmann TG, Mincheva A, Lichter P, Droge W, Schmitz ML. Human homeodomain-interacting protein kinase-2 (HIPK2) is a member of the DYRK family of protein kinases and maps to chromosome 7q32-q34. Biochimie. 2000;82:1123–7.

    Article  CAS  PubMed  Google Scholar 

  7. Choi JR, Lee SY, Shin KS, Choi CY, Kang SJ. p300-mediated acetylation increased the protein stability of HIPK2 and enhanced its tumor suppressor function. Sci Rep. 2017;7:16136.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Di Stefano V, Mattiussi M, Sacchi A, D’Orazi G. HIPK2 inhibits both MDM2 gene and protein by, respectively, p53-dependent and independent regulations. FEBS Lett. 2005;579:5473–80.

    Article  PubMed  CAS  Google Scholar 

  9. Kim EJ, Park JS, Um SJ. Identification and characterization of HIPK2 interacting with p73 and modulating functions of the p53 family in vivo. J Biol Chem. 2002;277:32020–8.

    Article  CAS  PubMed  Google Scholar 

  10. Li Q, Wang X, Wu X, Rui Y, Liu W, Wang J, et al. Daxx cooperates with the Axin/HIPK2/p53 complex to induce cell death. Cancer Res. 2007;67:66–74.

    Article  CAS  PubMed  Google Scholar 

  11. Wang Y, Debatin KM, Hug H. HIPK2 overexpression leads to stabilization of p53 protein and increased p53 transcriptional activity by decreasing Mdm2 protein levels. BMC Mol Biol. 2001;2:8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Nardinocchi L, Puca R, D’Orazi G. HIF-1alpha antagonizes p53-mediated apoptosis by triggering HIPK2 degradation. Aging. 2011;3:33–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Calzado MA, de la Vega L, Moller A, Bowtell DD, Schmitz ML. An inducible autoregulatory loop between HIPK2 and Siah2 at the apex of the hypoxic response. Nat Cell Biol. 2009;11:85–91.

    Article  CAS  PubMed  Google Scholar 

  14. Nardinocchi L, Puca R, Guidolin D, Belloni AS, Bossi G, Michiels C, et al. Transcriptional regulation of hypoxia-inducible factor 1alpha by HIPK2 suggests a novel mechanism to restrain tumor growth. Biochim Biophys Acta. 2009;1793:368–77.

    Article  CAS  PubMed  Google Scholar 

  15. Fang J, Yan L, Shing Y, Moses MA. HIF-1alpha-mediated up-regulation of vascular endothelial growth factor, independent of basic fibroblast growth factor, is important in the switch to the angiogenic phenotype during early tumorigenesis. Cancer Res. 2001;61:5731–5.

    CAS  PubMed  Google Scholar 

  16. Morse MA, Sun W, Kim R, He AR, Abada PB, Mynderse M, et al. The role of angiogenesis in hepatocellular carcinoma. Clin Cancer Res. 2019;25:912–20.

    Article  CAS  PubMed  Google Scholar 

  17. Hu HY, Yu CH, Zhang HH, Zhang SZ, Yu WY, Yang Y, et al. Exosomal miR-1229 derived from colorectal cancer cells promotes angiogenesis by targeting HIPK2. Int J Biol Macromol. 2019;132:470–7.

    Article  CAS  PubMed  Google Scholar 

  18. Qin Y, Hu Q, Ji S, Xu J, Dai W, Liu W, et al. Homeodomain-interacting protein kinase 2 suppresses proliferation and aerobic glycolysis via ERK/cMyc axis in pancreatic cancer. Cell Prolif. 2019;52:e12603.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Tan X, Tang H, Bi J, Li N, Jia Y. MicroRNA-222-3p associated with Helicobacter pylori targets HIPK2 to promote cell proliferation, invasion, and inhibits apoptosis in gastric cancer. J Cell Biochem. 2018;119:5153–62.

    Article  CAS  PubMed  Google Scholar 

  20. Zhang N, Tian L, Miao Z, Guo N. MicroRNA-197 induces epithelial-mesenchymal transition and invasion through the downregulation of HIPK2 in lung adenocarcinoma. J Genet. 2018;47:47–53.

    Article  PubMed  CAS  Google Scholar 

  21. Zhang Z, Wen P, Li F, Yao C, Wang T, Liang B, et al. HIPK2 inhibits cell metastasis and improves chemosensitivity in esophageal squamous cell carcinoma. Exp Ther Med. 2018;15:1113–8.

    CAS  PubMed  Google Scholar 

  22. Bitomsky N, Hofmann TG. Apoptosis and autophagy: regulation of apoptosis by DNA damage signalling–roles of p53, p73 and HIPK2. FEBS J. 2009;276:6074–83.

    Article  CAS  PubMed  Google Scholar 

  23. Upadhyay M, Bhadauriya P, Ganesh S. Heat shock modulates the subcellular localization, stability, and activity of HIPK2. Biochem Biophys Res Commun. 2016;472:580–4.

    Article  CAS  PubMed  Google Scholar 

  24. Zhang Q, Yoshimatsu Y, Hildebrand J, Frisch SM, Goodman RH. Homeodomain interacting protein kinase 2 promotes apoptosis by downregulating the transcriptional corepressor CtBP. Cell. 2003;115:177–86.

    Article  CAS  PubMed  Google Scholar 

  25. Zhang Q, Nottke A, Goodman RH. Homeodomain-interacting protein kinase-2 mediates CtBP phosphorylation and degradation in UV-triggered apoptosis. Proc Natl Acad Sci USA. 2005;102:2802–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Di Stefano V, Blandino G, Sacchi A, Soddu S, D’Orazi G. HIPK2 neutralizes MDM2 inhibition rescuing p53 transcriptional activity and apoptotic function. Oncogene. 2004;23:5185–92.

    Article  PubMed  CAS  Google Scholar 

  27. Lazzari C, Prodosmo A, Siepi F, Rinaldo C, Galli F, Gentileschi M, et al. HIPK2 phosphorylates DeltaNp63alpha and promotes its degradation in response to DNA damage. Oncogene. 2011;30:4802–13.

    Article  CAS  PubMed  Google Scholar 

  28. Tan M, Gong H, Zeng Y, Tao L, Wang J, Jiang J, et al. Downregulation of homeodomain-interacting protein kinase-2 contributes to bladder cancer metastasis by regulating Wnt signaling. J Cell Biochem. 2014;115:1762–7.

    Article  CAS  PubMed  Google Scholar 

  29. Garufi A, Pistritto G, Ceci C, Di Renzo L, Santarelli R, Faggioni A, et al. Targeting COX-2/PGE(2) pathway in HIPK2 knockdown cancer cells: impact on dendritic cell maturation. PLoS ONE. 2012;7:e48342.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Rinaldo C, Prodosmo A, Mancini F, Iacovelli S, Sacchi A, Moretti F, et al. MDM2-regulated degradation of HIPK2 prevents p53Ser46 phosphorylation and DNA damage-induced apoptosis. Mol Cell. 2007;25:739–50.

    Article  CAS  PubMed  Google Scholar 

  31. Zhou L, Feng Y, Jin Y, Liu X, Sui H, Chai N, et al. Verbascoside promotes apoptosis by regulating HIPK2-p53 signaling in human colorectal cancer. BMC Cancer. 2014;14:747.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Puca R, Nardinocchi L, Pistritto G, D’Orazi G. Overexpression of HIPK2 circumvents the blockade of apoptosis in chemoresistant ovarian cancer cells. Gynecol Oncol. 2008;109:403–10.

    Article  CAS  PubMed  Google Scholar 

  33. Lin J, Zhang Q, Lu Y, Xue W, Xu Y, Zhu Y, et al. Downregulation of HIPK2 increases resistance of bladder cancer cell to cisplatin by regulating Wip1. PLoS ONE. 2014;9:e98418.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Lee JW, Bae SH, Jeong JW, Kim SH, Kim KW. Hypoxia-inducible factor (HIF-1)alpha: its protein stability and biological functions. Exp Mol Med. 2004;36:1–12.

    Article  PubMed  Google Scholar 

  35. Feng Y, Zhou L, Sun X, Li Q. Homeodomain-interacting protein kinase 2 (HIPK2): a promising target for anti-cancer therapies. Oncotarget. 2017;8:20452–61.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Kim CJ, Cho YG, Park CH, Jeong SW, Nam SW, Kim SY, et al. Inactivating mutations of the Siah-1 gene in gastric cancer. Oncogene. 2004;23:8591–6.

    Article  CAS  PubMed  Google Scholar 

  37. Moehlenbrink J, Bitomsky N, Hofmann TG. Hypoxia suppresses chemotherapeutic drug-induced p53 Serine 46 phosphorylation by triggering HIPK2 degradation. Cancer Lett. 2010;292:119–24.

    Article  CAS  PubMed  Google Scholar 

  38. Nardinocchi L, Puca R, Sacchi A, D’Orazi G. Inhibition of HIF-1alpha activity by homeodomain-interacting protein kinase-2 correlates with sensitization of chemoresistant cells to undergo apoptosis. Mol Cancer. 2009;8:1.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Zhu AX, Duda DG, Sahani DV, Jain RK. HCC and angiogenesis: possible targets and future directions. Nat Rev Clin Oncol. 2011;8:292–301.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Liu S, Guo W, Shi J, Li N, Yu X, Xue J, et al. MicroRNA-135a contributes to the development of portal vein tumor thrombus by promoting metastasis in hepatocellular carcinoma. J Hepatol. 2012;56:389–96.

    Article  CAS  PubMed  Google Scholar 

  41. Ba Q, Li X, Huang C, Li J, Fu Y, Chen P, et al. BCCIPbeta modulates the ribosomal and extraribosomal function of S7 through a direct interaction. J Mol cell Biol. 2017;9:209–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Li X, Yao W, Yuan Y, Chen P, Li B, Li J, et al. Targeting of tumour-infiltrating macrophages via CCL2/CCR2 signalling as a therapeutic strategy against hepatocellular carcinoma. Gut. 2017;66:157–67.

    Article  CAS  PubMed  Google Scholar 

  43. Cai J, Li B, Zhu Y, Fang X, Zhu M, Wang M, et al. Prognostic biomarker identification through integrating the gene signatures of hepatocellular carcinoma properties. EBioMedicine. 2017;19:18–30.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Wang S, Wu X, Chen Y, Zhang J, Ding J, Zhou Y, et al. Prognostic and predictive role of JWA and XRCC1 expressions in gastric cancer. Clin Cancer Res. 2012;18:2987–96.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the National Key R&D Program of China (2018YFC2000700, 2018ZX10302205, and 2017YFC0907001), the National Natural Science Foundation of China (81630086, 81573161, 81973078, and 81427805), the Science and Technology Commission of Shanghai Municipality (16391903700), the Shanghai Municipality Health Commission (20164Y0250 and 2017YQ0059), the Major Science and Technology Innovation Program of Shanghai Municipal Education Commission (2019-01-07-00-01-E00059), the Key Research Program (ZDRW-ZS-2017-1) of the Chinese Academy of Sciences, Shanghai Municipal Human Resources and Social Security Bureau (2018060), Science and Technology Commission of Jiading Distinct (JDKW-2017-W09), and Shanghai Jiao Tong University (YG2017MS85).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qian Ba or Hui Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, P., Duan, X., Li, X. et al. HIPK2 suppresses tumor growth and progression of hepatocellular carcinoma through promoting the degradation of HIF-1α. Oncogene 39, 2863–2876 (2020). https://doi.org/10.1038/s41388-020-1190-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-020-1190-y

This article is cited by

Search

Quick links