Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

AIM2 promotes the development of non-small cell lung cancer by modulating mitochondrial dynamics

Abstract

Mitochondrial fusion and fission dynamics fine-tune cellular calcium homeostasis, ATP production capacity and ROS production and play important roles in cell proliferation and migration. Dysregulated mitochondrial dynamics is closely related to tumor development, but the mechanism of mitochondrial dynamics dysregulation and its role in the development of lung cancer remains unclear. Here, we demonstrate that the DNA sensor protein absent in melanoma 2 (AIM2) is highly expressed in non-small cell lung cancer (NSCLC) cells and that high AIM2 expression is associated with poor prognosis in patients with NSCLC. High expression of AIM2 contributes to tumor cell growth and proliferation independent of inflammasome activation in vitro and in vivo. Further studies have shown that AIM2 colocalizes with mitochondria in NSCLC cells and that AIM2 knockdown leads to enhanced mitochondrial fusion and decreased cell proliferation. Mechanistic studies have shown that AIM2 downregulation promotes MFN2 upregulation, thereby enhancing mitochondrial fusion. Moreover, we found that mitochondrial fusion driven by AIM2 knockdown leads to a decrease of cellular reactive oxygen species (ROS) production, which further causes inactivation of the MAPK/ERK signaling pathway. Together, we discovered a novel function of AIM2 in promoting NSCLC development by regulating mitochondrial dynamics and revealed its underlying mechanism. Our work provides new intervention targets for the treatment of NSCLC.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: AIM2 is highly expressed in NSCLC cells, and its expression correlates with poor survival of patients.
Fig. 2: AIM2 promotes NSCLC cell growth and proliferation in vitro and tumorigenesis in vivo that is independent of inflammasome activation.
Fig. 3: AIM2 colocalizes in mitochondria in NSCLC cells.
Fig. 4: AIM2 regulates mitochondrial dynamics by MFN2 in NSCLC cells.
Fig. 5: Mitochondria fusion enhancement suppressed cell proliferation in NSCLC cells.
Fig. 6: Mitochondrial dynamics regulated cell proliferation by regulating MAPK/ERK signaling pathway.
Fig. 7: Mitochondria dynamics regulated ERK activation by ROS production.

Similar content being viewed by others

References

  1. Trotta A, Chipuk J. Mitochondrial dynamics as regulators of cancer biology. Cell Mol Life Sci. 2017;74:1999–2017.

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Berman S, Pineda F, Hardwick J. Mitochondrial fission and fusion dynamics: the long and short of it. Cell Death Differ. 2008;15:1147–52.

    CAS  PubMed  Google Scholar 

  3. Rehman J, Zhang H, Toth P, Zhang Y, Marsboom G, Hong Z, et al. Inhibition of mitochondrial fission prevents cell cycle progression in lung cancer. FASEB J. 2012;26:2175–86.

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Loson O, Song Z, Chen H, Chan D. Fis1, Mff, MiD49, and MiD51 mediate Drp1 recruitment in mitochondrial fission. Mol Biol Cell. 2013;24:659–67.

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144:646–74.

    CAS  PubMed  Google Scholar 

  6. Simula L, Nazio F, Campello S. The mitochondrial dynamics in cancer and immune-surveillance. Semin Cancer Biol. 2017;47:29–42.

    CAS  PubMed  Google Scholar 

  7. Archer S. Mitochondrial dynamics-mitochondrial fission and fusion in human diseases. N Engl J Med. 2013;369:2236–51.

    CAS  PubMed  Google Scholar 

  8. Chen H, Chan DC. Mitochondrial dynamics in regulating the unique phenotypes of cancer and stem cells. Cell Metab. 2017;26:39–48.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Vyas S, Zaganjor E, Haigis M. Mitochondria and cancer. Cell. 2016;166:555–66.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Zhao J, Zhang J, Yu M, Xie Y, Huang Y, Wolff D, et al. Mitochondrial dynamics regulates migration and invasion of breast cancer cells. Oncogene. 2013;32:4814–24.

    CAS  PubMed  Google Scholar 

  11. Inoue-Yamauchi A, Oda H. Depletion of mitochondrial fission factor DRP1 causes increased apoptosis in human colon cancer cells. Biochem Biophys Res Commun. 2012;421:81–5.

    CAS  PubMed  Google Scholar 

  12. Che T, Lin C, Wu Y, Chen Y, Han C, Chang Y, et al. Mitochondrial translocation of EGFR regulates mitochondria dynamics and promotes metastasis in NSCLC. Oncotarget. 2015;6:37349–66.

    PubMed  PubMed Central  Google Scholar 

  13. Cai J, Wang J, Huang Y, Wu H, Xia T, Xiao J, et al. ERK/Drp1-dependent mitochondrial fission is involved in the MSC-induced drug resistance of T-cell acute lymphoblastic leukemia cells. Cell Death Dis. 2016;7:e2459.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. DeYoung K, Ray M, Su Y, Anzick S, Johnstone R, Trapani J, et al. Cloning a novel member of the human interferon-inducible gene family associated with control of tumorigenicity in a model of human melanoma. Oncogene. 1997;15:453–7.

    CAS  PubMed  Google Scholar 

  15. Lugrin J, Martinon F. The AIM2 inflammasome: sensor of pathogens and cellular perturbations. Immunol Rev. 2018;281:99–114.

    CAS  PubMed  Google Scholar 

  16. Hornung V, Ablasser A, Charrel-Dennis M, Bauernfeind F, Horvath G, Caffrey DR, et al. AIM2 recognizes cytosolic dsDNA and forms a caspase-1-activating inflammasome with ASC. Nature. 2009;458:514–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Wilson J, Prtrucelli A, Chen L, Koblansky A, Truax A, Oyama Y, et al. Inflammasome-independent role of AIM2 in suppressing colon tumorigenesis via DNA-PK and Akt. Nat Med. 2015;21:906–13.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Ma X, Guo P, Qiu Y, Mu K, Zhu L, Zhao W, et al. Loss of AIM2 expression promotes hepatocarcinoma progression through activation of mTOR-S6K1 pathway. Oncotarget. 2016;7:36185–97.

    PubMed  PubMed Central  Google Scholar 

  19. Ponomareva L, Liu H, Duan X, Dickerson E, Shen H, Panchanathan R, et al. AIM2, an IFN-inducible cytosolic DNA sensor, in the development of benign prostate hyperplasia and prostate cancer. Mol Cancer Res. 2013;11:1193–202.

    CAS  PubMed  Google Scholar 

  20. Chen I, Ou-Yang F, Hung J, Liu J, Wang H, Wang S, et al. AIM2 suppresses human breast cancer cell proliferation in vitro and mammary tumor growth in a mouse model. Mol Cancer Ther. 2006;5:1–7.

    CAS  PubMed  Google Scholar 

  21. Kondo Y, Nagai K, Nakahata S, Saito Y, Ichikawa T, Suekane A, et al. Overexpression of the DNA sensor protein absent in melanoma 2 and interferon-inducible 16 contributes to tumorigenesis of oral squamous cell carcinoma with p53 inactivation. Cancer Sci. 2012;103:782–90.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Farshchian M, Nissinen L, Siljamaki E, Riihila P, Piipponen M, Kivisaari A, et al. Tumor cell-specific AIM2 regulates growth and invasion of cutaneous squamous cell carcinoma. Oncotarget. 2017;8:45825–36.

    PubMed  PubMed Central  Google Scholar 

  23. Kong H, Wang Y, Zeng X, Wang Z, Wang H, Xie W. Differential expression of inflammasome in lung cancer cell lines and tissues. Tumour Biol. 2015;36:7501–13.

    CAS  PubMed  Google Scholar 

  24. Stack JH, Beaumont K, Larsen PD, Straley KS, Henkel GW, Randle JC, et al. IL-converting enzyme/caspase-1 inhibitor VX-765 blocks the hypersensitive response to an inflammatory stimulus in monocytes from familial cold autoinflammatory syndrome patients. J Immunol. 2005;175:2630–4.

    CAS  PubMed  Google Scholar 

  25. Broz P, Dixit VM. Inflammasomes: mechanism of assembly, regulation and signalling. Nat Rev Immunol. 2016;16:407–20.

    CAS  PubMed  Google Scholar 

  26. Liu T, Zhang L, Joo D, Sun SC. NF-κB signaling in inflammation. Signal Transduct Target Ther. 2017;2:17023.

    PubMed  PubMed Central  Google Scholar 

  27. Serasinghe M, Wieder S, Renault T, Elkholi R, Asciolla J, Yao J, et al. Mitochondrial division is requisite to RAS-induced transformation and targeted by oncogenic MAPK pathway inhibitors. Mol Cell. 2015;57:521–36.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Kashatus J, Nascimento A, Myers L, Sher A, Byrne L, Hoehn K, et al. Erk2 phosphorylation of Drp1 promotes mitochondrial fission and MAPK-driven tumor growth. Mol Cell. 2015;57:537–51.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Brown AP, Carlson TC, Loi CM, Graziano MJ. Pharmacodynamic and toxicokinetic evaluation of the novel MEK inhibitor, PD0325901, in the rat following oral and intravenous administration. Cancer Chemother Pharmacol. 2007;59:671–9.

    CAS  PubMed  Google Scholar 

  30. Chen H, McCaffery J, Chan D. Mitochondrial fusion protects against neurodegeneration in the cerebellum. Cell. 2007;130:548–62.

    CAS  PubMed  Google Scholar 

  31. Lennon FE, Salgia R. Mitochondrial dynamics: biology and therapy in lung cancer. Expert Opin Investig Drugs. 2014;23:675–92.

    CAS  PubMed  Google Scholar 

  32. Chen Y, Dorn GW 2nd. PINK1-phosphorylated mitofusin 2 is a parkin receptor for culling damaged mitochondria. Science. 2013;340:471–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Chen KH, Guo X, Ma D, Guo Y, Li Q, Yang D, et al. Dysregulation of HSG triggers vascular proliferative disorders. Nat Cell Biol. 2004;6:872–83.

    CAS  PubMed  Google Scholar 

  34. Antico Arciuch VG, Elguero ME, Poderoso JJ, Carreras MC. Mitochondrial regulation of cell cycle and proliferation. Antioxid Redox Signal. 2012;16:1150–80.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Takada Y, Mukhopadhyay A, Kundu GC, Mahabeleshwar GH, Singh S, Aggarwal BB. Hydrogen peroxide activates NF-kappa B through tyrosine phosphorylation of I kappa B alpha and serine phosphorylation of p65: evidence for the involvement of I kappa B alpha kinase and Syk protein-tyrosine kinase. J Biol Chem. 2003;278:24233–41.

    CAS  PubMed  Google Scholar 

  36. Reynaert NL, van der Vliet A, Guala AS, McGovern T, Hristova M, Pantano C, et al. Dynamic redox control of NF-κB through glutaredoxin-regulated Sglutathionylation of inhibitory inhibitory kappaB kinase beta. Proc Natl Acad Sci USA. 2006;103:13086–91.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Lei H, Kazlauskas A. Growth factors outside of the platelet-derived growth factor (PDGF) family employ reactive oxygen species/Src family kinases to activate PDGF receptor α and thereby promote proliferation and survival of cells. J Biol Chem. 2009;284:6329–36.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Xia M, Yu H, Gu S, Xu Y, Su J, Li H, et al. p62/SQSTM1 is involved in cisplatin resistance in human ovarian cancer cells via the Keap1-Nrf2-ARE system. Int J Oncol. 2014;45:2341–8.

    CAS  PubMed  Google Scholar 

  39. Zhang J, Li H, Wu Q, Chen Y, Deng Y, Yang Z, et al. Tumoral NOX4 recruits M2 tumor-associated macrophages via ROS/PI3K signaling-dependent various cytokine production to promote NSCLC growth. Redox Biol. 2019;22:101116.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Deheshi S, Dabiri B, Fan S, Tsang M, Rintoul GL. Changes in mitochondrial morphology induced by calcium or rotenone in primary astrocytes occur predominantly through ros-mediated remodeling. J Neurochem. 2015;133:684–99.

    CAS  PubMed  Google Scholar 

  41. Willems PH, Rossignol R, Dieteren CE, Murphy MP, Koopman WJ. Redox homeostasis and mitochondrial dynamics. Cell Metab. 2015;22:207–18.

    CAS  PubMed  Google Scholar 

  42. Yu Q, Zhang M, Ying Q, Xie X, Yue S, Tong B, et al. Decrease of AIM2 mediated by luteolin contributes to non-small cell lung cancer treatment. Cell Death Dis. 2019;10:218.

    PubMed  PubMed Central  Google Scholar 

  43. Zhang M, Jin C, Yang Y, Wang K, Zhou Y, Zhou Y, et al. AIM2 promotes non-small cell lung cancer cell growth through inflammasome-dependent pathway. J Cell Physiol. 2019;234:20161–73.

    CAS  PubMed  Google Scholar 

  44. Shao H, Jing K, Mahmoud E, Huang H, Fang X, Yu C. Apigenin sensitizes colon cancer cells to antitumor activity of ABT-263. Mol Cancer Ther. 2013;12:2640–50.

    CAS  PubMed  Google Scholar 

  45. Yan X, Li P, Zhan Y, Qi M, Liu J, An Z, et al. Dihydroartemisinin suppresses STAT3 signaling and Mcl-1 and Survivin expression to potentiate ABT-263-induced apoptosis in non-small cell lung cancer cells harboring EGFR or RAS mutation. Biochem Pharmacol. 2018;150:72–85.

    CAS  PubMed  Google Scholar 

  46. Yeo W, Chan SL, Mo FK, Chu CM, Hui JW, Tong JH, et al. Phase I/II study of temsirolimus for patients with unresectable Hepatocellular Carcinoma (HCC)-a correlative study to explore potential biomarkers for response. BMC Cancer. 2015;15:395.

    PubMed  PubMed Central  Google Scholar 

  47. Azim HA Jr, Peccatori FA, Brohee S, Branstetter D, Loi S, Viale G, et al. RANK-ligand (RANKL) expression in young breast cancer patients and during pregnancy. Breast Cancer Res. 2015;17:24.

    PubMed  PubMed Central  Google Scholar 

  48. Li J, Huang Q, Long X, Guo X, Sun X, Jin X, et al. Mitochondrial elongation-mediated glucose metabolism reprogramming is essential for tumour cell survival during energy stress. Oncogene. 2017;36:4901–12.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are thankful for financial support of National Natural Science Foundation of China (81872250), the Natural Science Foundation of Shaanxi Province, China (2016JM8102), the key industrial chain projects of Shaanxi Province (2019TD-033), the program of Innovative Research Team for the Central Universities (GK201701005), and the Student Innovation Training Program (201810718056, 201910718048), Shaanxi Normal University. The authors like to thank Dr Ling Guo and Yaohui Ren for assistance with TEM.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huanjie Shao.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qi, M., Dai, D., Liu, J. et al. AIM2 promotes the development of non-small cell lung cancer by modulating mitochondrial dynamics. Oncogene 39, 2707–2723 (2020). https://doi.org/10.1038/s41388-020-1176-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-020-1176-9

This article is cited by

Search

Quick links