Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

BCOR-coupled H2A monoubiquitination represses a subset of androgen receptor target genes regulating prostate cancer proliferation

Abstract

We have identified BCL6 corepressor (BCOR) as a hormone-dependent interaction partner of androgen receptor (AR), a key transcription factor in the development of normal and cancerous prostate. BCOR is often mutated in cancers and hematological diseases and as a component of a non-canonical polycomb repressive complex 1 (ncPRC1.1) required for arranging many facets of cellular differentiation. However, its role in androgen signaling or prostate cancer cells remains unknown. Here, our genome-wide analyses reveal that BCOR is recruited in an androgen-dependent fashion to majority of AR-binding chromatin sites in castration-resistant prostate cancer (CRPC) cells. Interestingly, depletion of BCOR has a significant effect on the expression of androgen-repressed genes linked to regulation of cell proliferation, differentiation and development. At many of these genes, such as HOX genes, the depletion leads to a decrease in H2A K119 monoubiquitination and an increase in mRNA expression. Consistently, BCOR depletion impairs the proliferation and viability of CRPC cells, inducing their apoptosis. Collectively, our data indicate a key role for the BCOR-ncPRC1.1 complex in the corepression of an important subset of AR target genes and the regulation of prostate cancer cell proliferation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: BCOR is recruited to AR-binding sites on chromatin in prostate cancer cells.
Fig. 2: Monoubiquitination of H2A is androgen-regulated at multiple genes in prostate cancer cells.
Fig. 3: Depletion of BCOR influences AR target gene expression in prostate cancer cells.
Fig. 4: Depletion of BCOR leads to a decrease in H2A monoubiquitination, especially at androgen-repressed genes in prostate cancer cells.
Fig. 5: BCOR regulates H2A monoubiquitination and expression of HOX C cluster genes in prostate cancer cells.
Fig. 6: Depletion of BCOR attenuates the proliferation of prostate cancer cells and induces their apoptosis.

Similar content being viewed by others

Data availability

ChIP-seq and RNA-seq data have been deposited to the Gene Expression Omnibus (GEO) database, www.ncbi.nlm.nih.gov/geo (accession no. GSE122572).

References

  1. Banerjee PP, Banerjee S, Brown TR, Zirkin BR. Androgen action in prostate function and disease. Am J Clin Exp Urol. 2018;6:62ā€“77.

    PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  2. Millard CJ, Watson PJ, Fairall L, Schwabe JW. An evolving understanding of nuclear receptor coregulator proteins. J Mol Endocrinol. 2013;51:T23ā€“36.

    CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  3. Meier K, Brehm A. Chromatin regulation: how complex does it get? Epigenetics. 2014;9:1485ā€“95.

    PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  4. Reiter F, Wienerroither S, Stark A. Combinatorial function of transcription factors and cofactors. Curr Opin Genet Dev. 2017;43:73ā€“81.

    CASĀ  PubMedĀ  Google ScholarĀ 

  5. Stark C, Breitkreutz BJ, Reguly T, Boucher L, Breitkreutz A, Tyers M. BioGRID: a general repository for interaction datasets. Nucleic Acids Res. 2006;34:D535ā€“9.

    CASĀ  PubMedĀ  Google ScholarĀ 

  6. Chatr-Aryamontri A, Oughtred R, Boucher L, Rust J, Chang C, Kolas NK. et al. The BioGRID interaction database: 2017 update. Nucleic Acids Res. 2017;45:D369ā€“79.

    CASĀ  PubMedĀ  Google ScholarĀ 

  7. Linke T, Scholten M, Baniahmad A. Detection of ligand-selective interactions of the human androgen receptor by SELDI-MS-TOF. Methods Mol Biol. 2011;776:225ā€“51.

    CASĀ  PubMedĀ  Google ScholarĀ 

  8. Hsiao JJ, Ng BH, Smits MM, Martinez HD, Jasavala RJ, Hinkson IV, et al. Research resource: androgen receptor activity is regulated through the mobilization of cell surface receptor networks. Mol Endocrinol. 2015;29:1195ā€“218.

    CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  9. Hsiao JJ, Smits MM, Ng BH, Lee J, Wright ME. Discovery proteomics identifies a molecular link between the coatomer protein complex i and androgen receptor-dependent transcription. J Biol Chem. 2016;291:18818ā€“42.

    CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  10. Lempiainen JK, Niskanen EA, Vuoti KM, Lampinen RE, Goos H, Varjosalo M, et al. Agonist-specific protein interactomes of glucocorticoid and androgen receptor as revealed by proximity mapping. Mol Cell Proteom. 2017;16:1462ā€“74.

    CASĀ  Google ScholarĀ 

  11. Stelloo S, Nevedomskaya E, Kim Y, Hoekman L, Bleijerveld OB, Mirza T, et al. Endogenous androgen receptor proteomic profiling reveals genomic subcomplex involved in prostate tumorigenesis. Oncogene. 2018;37:313ā€“22.

    CASĀ  PubMedĀ  Google ScholarĀ 

  12. Helsen C, Van den Broeck T, Voet A, Prekovic S, Van Poppel H, Joniau S, et al. Androgen receptor antagonists for prostate cancer therapy. Endocr Relat Cancer. 2014;21:T105ā€“18.

    CASĀ  PubMedĀ  Google ScholarĀ 

  13. Tilki D, Schaeffer EM, Evans CP. Understanding mechanisms of resistance in metastatic castration-resistant prostate cancer: the role of the androgen receptor. Eur Urol Focus. 2016;2:499ā€“505.

    PubMedĀ  Google ScholarĀ 

  14. Heemers HV, Schmidt LJ, Kidd E, Raclaw KA, Regan KM, Tindall DJ. Differential regulation of steroid nuclear receptor coregulator expression between normal and neoplastic prostate epithelial cells. Prostate. 2010;70:959ā€“70.

    CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  15. Liu S, Kumari S, Hu Q, Senapati D, Venkadakrishnan VB, Wang D, et al. A comprehensive analysis of coregulator recruitment, androgen receptor function and gene expression in prostate cancer. Elife 2017;6. https://doi.org/10.7554/eLife.28482.

  16. Mostaghel EA, Plymate SR, Montgomery B. Molecular pathways: targeting resistance in the androgen receptor for therapeutic benefit. Clin Cancer Res. 2014;20:791ā€“8.

    CASĀ  PubMedĀ  Google ScholarĀ 

  17. Foley C, Mitsiades N. Moving beyond the androgen receptor (AR): targeting AR-interacting proteins to treat prostate cancer. Horm Cancer. 2016;7:84ā€“103.

    CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  18. Skowron KJ, Booker K, Cheng C, Creed S, David BP, Lazzara PR, et al. Steroid receptor/coactivator binding inhibitors: an update. Mol Cell Endocrinol. 2019;493:110471.

    CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  19. Lewis EB. A gene complex controlling segmentation in Drosophila. Nature. 1978;276:565ā€“70.

    CASĀ  PubMedĀ  Google ScholarĀ 

  20. Schuettengruber B, Bourbon HM, Di Croce L, Cavalli G. Genome regulation by polycomb and trithorax: 70 years and counting. Cell. 2017;171:34ā€“57.

    CASĀ  PubMedĀ  Google ScholarĀ 

  21. Di Croce L, Helin K. Transcriptional regulation by Polycomb group proteins. Nat Struct Mol Biol. 2013;20:1147ā€“55.

    PubMedĀ  Google ScholarĀ 

  22. Gao Z, Zhang J, Bonasio R, Strino F, Sawai A, Parisi F, et al. PCGF homologs, CBX proteins, and RYBP define functionally distinct PRC1 family complexes. Mol Cell. 2012;45:344ā€“56.

    CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  23. Blackledge NP, Rose NR, Klose RJ. Targeting Polycomb systems to regulate gene expression: modifications to a complex story. Nat Rev Mol Cell Biol. 2015;16:643ā€“9.

    CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  24. Varambally S, Dhanasekaran SM, Zhou M, Barrette TR, Kumar-Sinha C, Sanda MG, et al. The polycomb group protein EZH2 is involved in progression of prostate cancer. Nature. 2002;419:624ā€“9.

    CASĀ  PubMedĀ  Google ScholarĀ 

  25. Cao Q, Yu J, Dhanasekaran SM, Kim JH, Mani RS, Tomlins SA, et al. Repression of E-cadherin by the polycomb group protein EZH2 in cancer. Oncogene. 2008;27:7274ā€“84.

    CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  26. Chng KR, Chang CW, Tan SK, Yang C, Hong SZ, Sng NY, et al. A transcriptional repressor co-regulatory network governing androgen response in prostate cancers. EMBO J. 2012;31:2810ā€“23.

    CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  27. Xu K, Wu ZJ, Groner AC, He HH, Cai C, Lis RT, et al. EZH2 oncogenic activity in castration-resistant prostate cancer cells is Polycomb-independent. Science. 2012;338:1465ā€“9.

    CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  28. Shah N, Wang P, Wongvipat J, Karthaus WR, Abida W, Armenia J, et al. Regulation of the glucocorticoid receptor via a BET-dependent enhancer drives antiandrogen resistance in prostate cancer. Elife 2017;6. https://doi.org/10.7554/eLife.27861.

  29. Liu Q, Wang G, Li Q, Jiang W, Kim JS, Wang R, et al. Polycomb group proteins EZH2 and EED directly regulate androgen receptor in advanced prostate cancer. Int J Cancer. 2019;145:415ā€“26.

    CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  30. van Leenders GJ, Dukers D, Hessels D, van den Kieboom SW, Hulsbergen CA, Witjes JA, et al. Polycomb-group oncogenes EZH2, BMI1, and RING1 are overexpressed in prostate cancer with adverse pathologic and clinical features. Eur Urol. 2007;52:455ā€“63.

    PubMedĀ  Google ScholarĀ 

  31. Su W, Han HH, Wang Y, Zhang B, Zhou B, Cheng Y. et al. The polycomb repressor complex 1 drives double-negative prostate cancer metastasis by coordinating stemness and immune suppression. Cancer Cell. 2019;36:139ā€“55.e10.

    CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  32. Lukacs RU, Memarzadeh S, Wu H, Witte ON. Bmi-1 is a crucial regulator of prostate stem cell self-renewal and malignant transformation. Cell Stem Cell. 2010;7:682ā€“93.

    CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  33. Ren C, Smith SG, Yap K, Li S, Li J, Mezei M, et al. Structure-guided discovery of selective antagonists for the chromodomain of polycomb repressive protein CBX7. ACS Med Chem Lett. 2016;7:601ā€“5.

    CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  34. Wei M, Jiao D, Han D, Wu J, Wei F, Zheng G, et al. Knockdown of RNF2 induces cell cycle arrest and apoptosis in prostate cancer cells through the upregulation of TXNIP. Oncotarget. 2017;8:5323ā€“38.

    PubMedĀ  Google ScholarĀ 

  35. Zhu S, Zhao D, Yan L, Jiang W, Kim JS, Gu B, et al. BMI1 regulates androgen receptor in prostate cancer independently of the polycomb repressive complex 1. Nat Commun. 2018;9:500ā€“018-02863-3.

    PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  36. Huynh KD, Fischle W, Verdin E, Bardwell VJ. BCoR, a novel corepressor involved in BCL-6 repression. Genes Dev. 2000;14:1810ā€“23.

    CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  37. Oliviero G, Munawar N, Watson A, Streubel G, Manning G, Bardwell V, et al. The variant Polycomb Repressor Complex 1 component PCGF1 interacts with a pluripotency sub-network that includes DPPA4, a regulator of embryogenesis. Sci Rep. 2015;5:18388.

    CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  38. Wang Z, Gearhart MD, Lee YW, Kumar I, Ramazanov B, Zhang Y. et al. A non-canonical BCOR-PRC1.1 complex represses differentiation programs in human ESCs. Cell Stem Cell. 2018;22:235ā€“51.e9.

    CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  39. Tiberi L, Bonnefont J, van den Ameele J, Le Bon SD, Herpoel A, Bilheu A, et al. A BCL6/BCOR/SIRT1 complex triggers neurogenesis and suppresses medulloblastoma by repressing Sonic Hedgehog signaling. Cancer Cell. 2014;26:797ā€“812.

    CASĀ  PubMedĀ  Google ScholarĀ 

  40. Cao Q, Gearhart MD, Gery S, Shojaee S, Yang H, Sun H, et al. BCOR regulates myeloid cell proliferation and differentiation. Leukemia. 2016;30:1155ā€“65.

    CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  41. Kelly MJ, So J, Rogers AJ, Gregory G, Li J, Zethoven M, et al. Bcor loss perturbs myeloid differentiation and promotes leukaemogenesis. Nat Commun. 2019;10:1347ā€“019-09250-6.

    PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  42. Ng D, Thakker N, Corcoran CM, Donnai D, Perveen R, Schneider A, et al. Oculofaciocardiodental and Lenz microphthalmia syndromes result from distinct classes of mutations in BCOR. Nat Genet. 2004;36:411ā€“6.

    CASĀ  PubMedĀ  Google ScholarĀ 

  43. Hilton E, Johnston J, Whalen S, Okamoto N, Hatsukawa Y, Nishio J, et al. BCOR analysis in patients with OFCD and Lenz microphthalmia syndromes, mental retardation with ocular anomalies, and cardiac laterality defects. Eur J Hum Genet. 2009;17:1325ā€“35.

    CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  44. Yamamoto Y, Abe A, Emi N. Clarifying the impact of polycomb complex component disruption in human cancers. Mol Cancer Res. 2014;12:479ā€“84.

    CASĀ  PubMedĀ  Google ScholarĀ 

  45. van den Boom V, Maat H, Geugien M, Rodriguez Lopez A, Sotoca AM, Jaques J, et al. Non-canonical PRC1.1 targets active genes independent of H3K27me3 and is essential for leukemogenesis. Cell Rep. 2016;14:332ā€“46.

    PubMedĀ  Google ScholarĀ 

  46. Toropainen S, Malinen M, Kaikkonen S, Rytinki M, Jaaskelainen T, Sahu B, et al. SUMO ligase PIAS1 functions as a target gene selective androgen receptor coregulator on prostate cancer cell chromatin. Nucleic Acids Res. 2015;43:848ā€“61.

    CASĀ  PubMedĀ  Google ScholarĀ 

  47. Cohen I, Zhao D, Bar C, Valdes VJ, Dauber-Decker KL, Nguyen MB. et al. PRC1 fine-tunes gene repression and activation to safeguard skin development and stem cell specification. Cell Stem Cell. 2018;22:726ā€“39.e7.

    CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  48. Hatzi K, Jiang Y, Huang C, Garrett-Bakelman F, Gearhart MD, Giannopoulou EG, et al. A hybrid mechanism of action for BCL6 in B cells defined by formation of functionally distinct complexes at enhancers and promoters. Cell Rep. 2013;4:578ā€“88.

    CASĀ  PubMedĀ  Google ScholarĀ 

  49. Granadino-Roldan JM, Obiol-Pardo C, Pinto M, Garzon A, Rubio-Martinez J. Molecular dynamics analysis of the interaction between the human BCL6 BTB domain and its SMRT, NcoR and BCOR corepressors: the quest for a consensus dynamic pharmacophore. J Mol Graph Model. 2014;50:142ā€“51.

    CASĀ  PubMedĀ  Google ScholarĀ 

  50. Minner S, Lutz J, Hube-Magg C, Kluth M, Simon R, Hoflmayer D, et al. Loss of CCAAT-enhancer-binding protein alpha (CEBPA) is linked to poor prognosis in PTEN deleted and TMPRSS2:ERG fusion type prostate cancers. Prostate. 2019;79:302ā€“11.

    CASĀ  PubMedĀ  Google ScholarĀ 

  51. Connelly ZM, Yang S, Chen F, Yeh Y, Khater N, Jin R, et al. Foxa2 activates the transcription of androgen receptor target genes in castrate resistant prostatic tumors. Am J Clin Exp Urol. 2018;6:172ā€“81.

    PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  52. Zhang X, Wang L, Wang Y, Shi S, Zhu H, Xiao F, et al. Inhibition of FOXQ1 induces apoptosis and suppresses proliferation in prostate cancer cells by controlling BCL11A/MDM2 expression. Oncol Rep. 2016;36:2349ā€“56.

    CASĀ  PubMedĀ  Google ScholarĀ 

  53. Axlund SD, Lambert JR, Nordeen SK. HOXC8 inhibits androgen receptor signaling in human prostate cancer cells by inhibiting SRC-3 recruitment to direct androgen target genes. Mol Cancer Res. 2010;8:1643ā€“55.

    CASĀ  PubMedĀ  Google ScholarĀ 

  54. Javed S, Langley SE. Importance of HOX genes in normal prostate gland formation, prostate cancer development and its early detection. BJU Int. 2014;113:535ā€“40.

    CASĀ  PubMedĀ  Google ScholarĀ 

  55. Yao J, Chen Y, Nguyen DT, Thompson ZJ, Eroshkin AM, Nerlakanti N, et al. The homeobox gene, HOXB13, regulates a mitotic protein-kinase interaction network in metastatic prostate cancers. Sci Rep. 2019;9:9715ā€“019-46064-4.

    PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  56. Miller GJ, Miller HL, van Bokhoven A, Lambert JR, Werahera PN, Schirripa O, et al. Aberrant HOXC expression accompanies the malignant phenotype in human prostate. Cancer Res. 2003;63:5879ā€“88.

    CASĀ  PubMedĀ  Google ScholarĀ 

  57. Bhatlekar S, Fields JZ, Boman BM. HOX genes and their role in the development of human cancers. J Mol Med (Berl). 2014;92:811ā€“23.

    CASĀ  Google ScholarĀ 

  58. Cancer Genome Atlas Research Network. The molecular taxonomy of primary prostate. Cancer Cell. 2015;163:1011ā€“25.

    Google ScholarĀ 

  59. Pretorius E, Africander DJ, Vlok M, Perkins MS, Quanson J, Storbeck KH. 11-ketotestosterone and 11-ketodihydrotestosterone in castration resistant prostate cancer: potent androgens which can no longer be ignored. PLoS ONE. 2016;11:e0159867.

    PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  60. Panagopoulos I, Thorsen J, Gorunova L, Haugom L, Bjerkehagen B, Davidson B, et al. Fusion of the ZC3H7B and BCOR genes in endometrial stromal sarcomas carrying an X;22-translocation. Genes Chromosomes Cancer. 2013;52:610ā€“8.

    CASĀ  PubMedĀ  Google ScholarĀ 

  61. Yamamoto Y, Tsuzuki S, Tsuzuki M, Handa K, Inaguma Y, Emi N. BCOR as a novel fusion partner of retinoic acid receptor alpha in a t(X;17)(p11;q12) variant of acute promyelocytic leukemia. Blood. 2010;116:4274ā€“83.

    CASĀ  PubMedĀ  Google ScholarĀ 

  62. Dobashi A, Tsuyama N, Asaka R, Togashi Y, Ueda K, Sakata S, et al. Frequent BCOR aberrations in extranodal NK/T-Cell lymphoma, nasal type. Genes Chromosomes Cancer. 2016;55:460ā€“71.

    CASĀ  PubMedĀ  Google ScholarĀ 

  63. Dickson BC, Lum A, Swanson D, Bernardini MQ, Colgan TJ, Shaw PA, et al. Novel EPC1 gene fusions in endometrial stromal sarcoma. Genes Chromosomes Cancer. 2018;57:598ā€“603.

    CASĀ  PubMedĀ  Google ScholarĀ 

  64. Astolfi A, Fiore M, Melchionda F, Indio V, Bertuccio SN, Pession A. BCOR involvement in cancer. Epigenomics. 2019;11:835ā€“55.

    CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  65. Grasso CS, Wu YM, Robinson DR, Cao X, Dhanasekaran SM, Khan AP, et al. The mutational landscape of lethal castration-resistant prostate cancer. Nature. 2012;487:239ā€“43.

    CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  66. Robinson D, Van Allen EM, Wu YM, Schultz N, Lonigro RJ, Mosquera JM, et al. Integrative clinical genomics of advanced prostate cancer. Cell. 2015;161:1215ā€“28.

    CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  67. Han SJ, Begum K, Foulds CE, Hamilton RA, Bailey S, Malovannaya A, et al. The dual estrogen receptor alpha inhibitory effects of the tissue-selective estrogen complex for endometrial and breast safety. Mol Pharm. 2016;89:14ā€“26.

    CASĀ  Google ScholarĀ 

  68. Junco SE, Wang R, Gaipa JC, Taylor AB, Schirf V, Gearhart MD, et al. Structure of the polycomb group protein PCGF1 in complex with BCOR reveals basis for binding selectivity of PCGF homologs. Structure. 2013;21:665ā€“71.

    CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  69. Ghetu AF, Corcoran CM, Cerchietti L, Bardwell VJ, Melnick A, Prive GG. Structure of a BCOR corepressor peptide in complex with the BCL6 BTB domain dimer. Mol Cell. 2008;29:384ā€“91.

    CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  70. Fursova NA, Blackledge NP, Nakayama M, Ito S, Koseki Y, Farcas AM. et al. Synergy between variant PRC1 complexes defines polycomb-mediated gene repression. Mol Cell. 2019;74:1020ā€“36.e8.

    CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  71. Tavares L, Dimitrova E, Oxley D, Webster J, Poot R, Demmers J, et al. RYBP-PRC1 complexes mediate H2A ubiquitylation at polycomb target sites independently of PRC2 and H3K27me3. Cell. 2012;148:664ā€“78.

    CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  72. Blackledge NP, Farcas AM, Kondo T, King HW, McGouran JF, Hanssen LL, et al. Variant PRC1 complex-dependent H2A ubiquitylation drives PRC2 recruitment and polycomb domain formation. Cell. 2014;157:1445ā€“59.

    CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  73. Cooper S, Dienstbier M, Hassan R, Schermelleh L, Sharif J, Blackledge NP, et al. Targeting polycomb to pericentric heterochromatin in embryonic stem cells reveals a role for H2AK119u1 in PRC2 recruitment. Cell Rep. 2014;7:1456ā€“70.

    CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  74. Cooper S, Grijzenhout A, Underwood E, Ancelin K, Zhang T, Nesterova TB, et al. Jarid2 binds mono-ubiquitylated H2A lysine 119 to mediate crosstalk between Polycomb complexes PRC1 and PRC2. Nat Commun. 2016;7:13661.

    CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  75. Beguelin W, Teater M, Gearhart MD, Calvo Fernandez MT, Goldstein RL, Cardenas MG, et al. EZH2 and BCL6 cooperate to assemble CBX8-BCOR complex to repress bivalent promoters, mediate germinal center formation and lymphomagenesis. Cancer Cell. 2016;30:197ā€“213.

    CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  76. Abate-Shen C. Deregulated homeobox gene expression in cancer: cause or consequence? Nat Rev Cancer. 2002;2:777ā€“85.

    CASĀ  PubMedĀ  Google ScholarĀ 

  77. Karvonen U, Kallio PJ, Janne OA, Palvimo JJ. Interaction of androgen receptors with androgen response element in intact cells. Roles of amino- and carboxyl-terminal regions and the ligand. J Biol Chem. 1997;272:15973ā€“9.

    CASĀ  PubMedĀ  Google ScholarĀ 

  78. Rytinki MM, Kaikkonen S, Sutinen P, Palvimo JJ. Analysis of androgen receptor SUMOylation. Methods Mol Biol. 2011;776:183ā€“97.

    CASĀ  PubMedĀ  Google ScholarĀ 

  79. Malinen M, Niskanen EA, Kaikkonen MU, Palvimo JJ. Crosstalk between androgen and pro-inflammatory signaling remodels androgen receptor and NF-kappaB cistrome to reprogram the prostate cancer cell transcriptome. Nucleic Acids Res. 2017;45:619ā€“30.

    CASĀ  PubMedĀ  Google ScholarĀ 

  80. Toropainen S, Niskanen EA, Malinen M, Sutinen P, Kaikkonen MU, Palvimo JJ. Global analysis of transcription in castration-resistant prostate cancer cells uncovers active enhancers and direct androgen receptor targets. Sci Rep. 2016;6:33510.

    CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  81. Heinz S, Benner C, Spann N, Bertolino E, Lin YC, Laslo P, et al. Simple combinations of lineage-determining transcription factors prime cis-regulatory elements required for macrophage and B cell identities. Mol Cell. 2010;38:576ā€“89.

    CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  82. Robinson MD, McCarthy DJ, Smyth GK. edgeR: a bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics. 2010;26:139ā€“40.

    CASĀ  PubMedĀ  Google ScholarĀ 

  83. Huang da W, Sherman BT, Lempicki RA. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc. 2009;4:44ā€“57.

    PubMedĀ  Google ScholarĀ 

  84. Huang da W, Sherman BT, Lempicki RA. Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists. Nucleic Acids Res. 2009;37:1ā€“13.

    PubMedĀ  Google ScholarĀ 

  85. Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, et al. Fiji: an open-source platform for biological-image analysis. Nat Methods. 2012;9:676ā€“82.

    CASĀ  PubMedĀ  Google ScholarĀ 

  86. Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics. 2014;30:2114ā€“20.

    CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  87. Kim D, Pertea G, Trapnell C, Pimentel H, Kelley R, Salzberg SL. TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions. Genome Biol. 2013;14:R36ā€“2013-14-4-r36.

    PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  88. Manjur ABMK, Lempiainen JK, Malinen M, Palvimo JJ, Niskanen EA. IRF2BP2 modulates the crosstalk between glucocorticoid and TNF signaling. J Steroid Biochem Mol Biol. 2019;192:105382.

    CASĀ  PubMedĀ  Google ScholarĀ 

Download references

Acknowledgements

We thank Merja RƤsƤnen and Eija Korhonen for assistance in cell culturing and plasmid and buffer preparing. The EMBL GeneCore is greatly acknowledged for deep sequencing, and the UEF Bioinformatics Center for providing computational infrastructure. The UEF Cell and Tissue Imaging Unit is greatly thanked for providing services and equipment for cell proliferation and apoptosis assays.

Funding

This work was supported by the Academy of Finland, the Cancer Foundation Finland, the Sigrid JusƩlius Foundation, the UEF Doctoral Programme in Molecular Medicine, the Jalmari and Rauha Ahokas Foundation, the Instrumentarium Foundation, the Orion Research Foundation, the Ida Montini Foundation and the Kuopio University Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jorma J. Palvimo.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Publisherā€™s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

LempiƤinen, J.K., Manjur, A.B.M.K., Malinen, M. et al. BCOR-coupled H2A monoubiquitination represses a subset of androgen receptor target genes regulating prostate cancer proliferation. Oncogene 39, 2391ā€“2407 (2020). https://doi.org/10.1038/s41388-020-1153-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-020-1153-3

This article is cited by

Search

Quick links