Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The functional roles of TCA cycle metabolites in cancer

Abstract

The tricarboxylic acid cycle (TCA cycle) has been known for decades as a hub for generating cellular energy and precursors for biosynthetic pathways. Several cancers harbor mutations that affect the integrity of this cycle, mostly at the levels of isocitrate dehydrogenase (IDH), succinate dehydrogenase (SDH), and fumarate hydratase (FH). This results in dysregulation in the production of TCA cycle metabolites and is probably implicated in cancer initiation. By modulating cellular activities, including metabolism and signaling, TCA cycle intermediates are able to impact the processes of cancer development and progression. In this review, we discuss the functional roles of the TCA cycle intermediates in suppressing or promoting the progression of cancers. A further understanding of TCA metabolites’ roles and molecular mechanisms in oncogenesis would prompt developing novel metabolite-based cancer therapy in the future.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The Influence of the TCA cycle on cancer progression.
Fig. 2: Accumulation of succinate and succinyl-CoA in SDH-deficient cells, or fumarate in FH-deficient cells promote cancer progression.

Similar content being viewed by others

References

  1. Owen OE, Kalhan SC, Hanson RW. The key role of anaplerosis and cataplerosis for citric acid cycle function. J Biol Chem. 2002;277:30409–12.

    Article  CAS  PubMed  Google Scholar 

  2. Warburg O, Wind F, Negelein E. The metabolism of tumors in the body. J Gen Physiol. 1927;8:519–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Warburg O. On the origin of cancer cells. Science. 1956;123:309–14.

    Article  CAS  PubMed  Google Scholar 

  4. DeBerardinis RJ, Chandel NS. Fundamentals of cancer metabolism. 2016. https://advances.sciencemag.org/content/advances/2/5/e1600200.full.pdf. Accessed 30 Nov 2020.

  5. Zong W-X, Rabinowitz JD, White E. Mitochondria and cancer. Mol Cell. 2016;61:667–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. McGuirk S, Audet-Delage Y, St-Pierre J. Metabolic fitness and plasticity in cancer progression. Trends Cancer. 2020;6:49–61.

    Article  CAS  PubMed  Google Scholar 

  7. Zasłona Z, O’Neill LAJ. Cytokine-like roles for metabolites in immunity. Mol Cell. 2020;78:814–23.

    Article  PubMed  Google Scholar 

  8. Filipp FV, Scott DA, Ronai ZA, Osterman AL, Smith JW. Reverse TCA cycle flux through isocitrate dehydrogenases 1 and 2 is required for lipogenesis in hypoxic melanoma cells. Pigment Cell Melanoma Res. 2012;25:375–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Li Z, Li D, Choi EY, Lapidus R, Zhang L, Huang S-M, et al. Silencing of solute carrier family 13 member 5 disrupts energy homeostasis and inhibits proliferation of human hepatocarcinoma cells. J Biol Chem. 2017;292:13890–901.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Fernandez HR, Gadre SM, Tan M, Graham GT, Mosaoa R, Ongkeko MS, et al. The mitochondrial citrate carrier, SLC25A1, drives stemness and therapy resistance in non-small cell lung cancer. Cell Death Differ. 2018;25:1239–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Hanai J, Doro N, Sasaki AT, Kobayashi S, Cantley LC, Seth P, et al. Inhibition of lung cancer growth: ATP citrate lyase knockdown and statin treatment leads to dual blockade of mitogen-activated protein Kinase (MAPK) and Phosphatidylinositol-3-kinase (PI3K)/AKT pathways. J Cell Physiol. 2012;227:1709–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Wang T-A, Zhang X-D, Guo X-Y, Xian S-L, Lu Y-F. 3-Bromopyruvate and sodium citrate target glycolysis, suppress survivin, and induce mitochondrial-mediated apoptosis in gastric cancer cells and inhibit gastric orthotopic transplantation tumor growth. Oncol Rep. 2016;35:1287–96.

    Article  CAS  PubMed  Google Scholar 

  13. Ren J-G, Seth P, Ye H, Guo K, Hanai J, Husain Z, et al. Citrate suppresses tumor growth in multiple models through inhibition of glycolysis, the tricarboxylic acid cycle and the IGF-1R pathway. Sci Rep. 2017;7:4537.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Caiazza C, D’Agostino M, Passaro F, Faicchia D, Mallardo M, Paladino S, et al. Effects of long-term citrate treatment in the PC3 prostate cancer cell line. Int J Mol Sci. 2019;20. https://doi.org/10.3390/ijms20112613.

  15. Lin C-C, Cheng T-L, Tsai W-H, Tsai H-J, Hu K-H, Chang H-C, et al. Loss of the respiratory enzyme citrate synthase directly links the Warburg effect to tumor malignancy. Sci Rep. 2012;2:785.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Chen L, Liu T, Zhou J, Wang Y, Wang X, Di W, et al. Citrate synthase expression affects tumor phenotype and drug resistance in human ovarian carcinoma. PLOS ONE. 2014;9:e115708.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Chesney J. 6-Phosphofructo-2-kinase/fructose-2,6-bisphosphatase and tumor cell glycolysis. Curr Opin Clin Nutr Metab Care. 2006;9:535–9.

    Article  CAS  PubMed  Google Scholar 

  18. Icard P, Fournel L, Coquerel A, Gligorov J, Alifano M, Lincet H. Citrate targets FBPase and constitutes an emerging novel approach for cancer therapy. Cancer Cell Int. 2018;18. https://doi.org/10.1186/s12935-018-0676-y.

  19. Meléndez-Rodríguez F, Urrutia AA, Lorendeau D, Rinaldi G, Roche O, Böğürcü-Seidel N, et al. HIF1α Suppresses tumor cell proliferation through inhibition of aspartate biosynthesis. Cell Rep. 2019;26:2257–65.e4.

    Article  PubMed  Google Scholar 

  20. Philippe I, Hubert L. The reduced concentration of citrate in cancer cells: an indicator of cancer aggressiveness and a possible therapeutic target. Drug Resist Updat. 2016;29:47–53.

    Article  Google Scholar 

  21. Bouillez A, Rajabi H, Pitroda S, Jin C, Alam M, Kharbanda A, et al. Inhibition of MUC1-C suppresses MYC expression and attenuates malignant growth in KRAS mutant lung adenocarcinomas. Cancer Res. 2016;76:1538–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Peng M, Yang D, Hou Y, Liu S, Zhao M, Qin Y, et al. Intracellular citrate accumulation by oxidized ATM-mediated metabolism reprogramming via PFKP and CS enhances hypoxic breast cancer cell invasion and metastasis. Cell Death Dis. 2019;10:228.

    Article  PubMed  PubMed Central  Google Scholar 

  23. El Sayed SM, El-Magd RMA, Shishido Y, Yorita K, Chung SP, Tran DH, et al. D-Amino acid oxidase-induced oxidative stress, 3-bromopyruvate and citrate inhibit angiogenesis, exhibiting potent anticancer effects. J Bioenerg Biomembr. 2012;44:513–23.

    Article  CAS  PubMed  Google Scholar 

  24. Lincet H, Kafara P, Giffard F, Abeilard-Lemoisson E, Duval M, Louis M-H, et al. Inhibition of Mcl-1 expression by citrate enhances the effect of Bcl-xL inhibitors on human ovarian carcinoma cells. J Ovarian Res. 2013;6:72.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Yi CH, Pan H, Seebacher J, Jang I-H, Hyberts SG, Heffron GJ, et al. Metabolic regulation of protein N-alpha-acetylation by Bcl-xL promotes cell survival. Cell. 2011;146:607–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Xia Y, Zhang X, Bo A, Sun J, Li M. Sodium citrate inhibits the proliferation of human gastric adenocarcinoma epithelia cells. Oncol Lett. 2018;15:6622–8.

    PubMed  PubMed Central  Google Scholar 

  27. Williams NC, O’Neill LAJ. A role for the krebs cycle intermediate citrate in metabolic reprogramming in innate immunity and inflammation. Front Immunol. 2018;9. https://doi.org/10.3389/fimmu.2018.00141.

  28. Icard P, Poulain L, Lincet H. Understanding the central role of citrate in the metabolism of cancer cells. Biochim Biophys Acta 2012;1825:111–6.

    CAS  PubMed  Google Scholar 

  29. Wang J-B, Erickson JW, Fuji R, Ramachandran S, Gao P, Dinavahi R, et al. Targeting mitochondrial glutaminase activity inhibits oncogenic transformation. Cancer Cell. 2010;18:207–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. McBrayer SK, Mayers JR, DiNatale GJ, Shi DD, Khanal J, Chakraborty AA, et al. Transaminase inhibition by 2-hydroxyglutarate impairs glutamate biosynthesis and redox homeostasis in glioma. Cell. 2018;175:101–16.e25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Turcan S, Rohle D, Goenka A, Walsh LA, Fang F, Yilmaz E, et al. IDH1 mutation is sufficient to establish the glioma hypermethylator phenotype. Nature. 2012;483:479–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Eckel-Passow JE, Lachance DH, Molinaro AM, Walsh KM, Decker PA, Sicotte H, et al. Glioma groups based on 1p/19q, IDH, and TERT promoter mutations in tumors. N Engl J Med. 2015;372:2499–508.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Raffel S, Falcone M, Kneisel N, Hansson J, Wang W, Lutz C, et al. BCAT1 restricts αKG levels in AML stem cells leading to IDHmut-like DNA hypermethylation. Nature. 2017;551:384–8.

    Article  CAS  PubMed  Google Scholar 

  34. Gaglio D, Metallo CM, Gameiro PA, Hiller K, Danna LS, Balestrieri C, et al. Oncogenic K-Ras decouples glucose and glutamine metabolism to support cancer cell growth. Mol Syst Biol. 2011;7:523.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Abla H, Sollazzo M, Gasparre G, Iommarini L, Porcelli AM. The multifaceted contribution of α-ketoglutarate to tumor progression: an opportunity to exploit? Semin Cell Dev Biol. 2020;98:26–33.

    Article  CAS  PubMed  Google Scholar 

  36. Mullen AR, Wheaton WW, Jin ES, Chen P-H, Sullivan LB, Cheng T, et al. Reductive carboxylation supports growth in tumour cells with defective mitochondria. Nature. 2012;481:385–8.

    Article  CAS  Google Scholar 

  37. Fan J, Kamphorst JJ, Rabinowitz JD, Shlomi T. Fatty acid labeling from glutamine in hypoxia can be explained by isotope exchange without net reductive isocitrate dehydrogenase (IDH) flux. J Biol Chem. 2013;288:31363–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Chen Q, Kirk K, Shurubor YI, Zhao D, Arreguin AJ, Shahi I, et al. Rewiring of glutamine metabolism is a bioenergetic adaptation of human cells with mitochondrial DNA mutations. Cell Metab. 2018;27:1007–25.e5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Gameiro PA, Yang J, Metelo AM, Pérez-Carro R, Baker R, Wang Z, et al. In vivo HIF-mediated reductive carboxylation is regulated by citrate levels and sensitizes VHL-deficient cells to glutamine deprivation. Cell Metab. 2013;17:372–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Morris JP, Yashinskie JJ, Koche R, Chandwani R, Tian S, Chen C-C, et al. α-Ketoglutarate links p53 to cell fate during tumour suppression. Nature. 2019;573:595–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Son J, Lyssiotis CA, Ying H, Wang X, Hua S, Ligorio M, et al. Glutamine supports pancreatic cancer growth through a KRAS-regulated metabolic pathway. Nature. 2013;496:101–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Jeong SM, Hwang S, Park K, Yang S, Seong RH. Enhanced mitochondrial glutamine anaplerosis suppresses pancreatic cancer growth through autophagy inhibition. Sci Rep. 2016;6. https://doi.org/10.1038/srep30767.

  43. Yang S, Wang X, Contino G, Liesa M, Sahin E, Ying H, et al. Pancreatic cancers require autophagy for tumor growth. Genes Dev. 2011;25:717–29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Durán RV, Oppliger W, Robitaille AM, Heiserich L, Skendaj R, Gottlieb E, et al. Glutaminolysis activates Rag-mTORC1 signaling. Mol Cell. 2012;47:349–58.

    Article  PubMed  Google Scholar 

  45. Tennant DA, Durán RV, Boulahbel H, Gottlieb E. Metabolic transformation in cancer. Carcinogenesis. 2009;30:1269–80.

    Article  CAS  PubMed  Google Scholar 

  46. Mariño G, Pietrocola F, Eisenberg T, Kong Y, Malik SA, Andryushkova A, et al. Regulation of autophagy by cytosolic acetyl-coenzyme A. Mol Cell. 2014;53:710–25.

    Article  PubMed  Google Scholar 

  47. Kuiper C, Vissers MCM. Ascorbate as a co-factor for fe- and 2-oxoglutarate dependent dioxygenases: physiological activity in tumor growth and progression. Front Oncol. 2014;4:359.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Martinez S, Hausinger RP. Catalytic mechanisms of Fe(II)- and 2-oxoglutarate-dependent oxygenases. J Biol Chem. 2015;290:20702–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Dang L, Yen K, Attar EC. IDH mutations in cancer and progress toward development of targeted therapeutics. Ann Oncol. 2016;27:599–608.

    Article  CAS  PubMed  Google Scholar 

  50. Dang L, White DW, Gross S, Bennett BD, Bittinger MA, Driggers EM, et al. Cancer-associated IDH1 mutations produce 2-hydroxyglutarate. Nature. 2009;462:739–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Ward PS, Patel J, Wise DR, Abdel-Wahab O, Bennett BD, Coller HA, et al. The common feature of leukemia-associated IDH1 and IDH2 mutations is a neomorphic enzyme activity converting α-ketoglutarate to 2-hydroxyglutarate. Cancer Cell. 2010;17:225–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Ye D, Ma S, Xiong Y, Guan K-L. R-2-hydroxyglutarate as the key effector of IDH mutations promoting oncogenesis. Cancer Cell. 2013;23:274–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Losman J-A, Looper RE, Koivunen P, Lee S, Schneider RK, McMahon C, et al. (R)-2-hydroxyglutarate is sufficient to promote leukemogenesis and its effects are reversible. Science. 2013;339:1621–5.

    Article  CAS  PubMed  Google Scholar 

  54. Xu W, Yang H, Liu Y, Yang Y, Wang P, Kim S-H, et al. Oncometabolite 2-hydroxyglutarate is a competitive inhibitor of α-ketoglutarate-dependent dioxygenases. Cancer Cell. 2011;19:17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Chowdhury R, Yeoh KK, Tian Y-M, Hillringhaus L, Bagg EA, Rose NR, et al. The oncometabolite 2‐hydroxyglutarate inhibits histone lysine demethylases. EMBO Rep. 2011;12:463–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Bunse L, Pusch S, Bunse T, Sahm F, Sanghvi K, Friedrich M, et al. Suppression of antitumor T cell immunity by the oncometabolite (R)-2-hydroxyglutarate. Nat Med. 2018;24:1192–203.

    Article  CAS  PubMed  Google Scholar 

  57. Böttcher M, Renner K, Berger R, Mentz K, Thomas S, Cardenas-Conejo ZE, et al. D-2-hydroxyglutarate interferes with HIF-1α stability skewing T-cell metabolism towards oxidative phosphorylation and impairing Th17 polarization. Oncoimmunology. 2018;7:e1445454.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Chen J-Y, Lai Y-S, Tsai H-J, Kuo C-C, Yen BL, Yeh S-P, et al. The oncometabolite R-2-hydroxyglutarate activates NF-κB-dependent tumor-promoting stromal niche for acute myeloid leukemia cells. Sci Rep. 2016;6:32428.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Lu C, Ward PS, Kapoor GS, Rohle D, Turcan S, Abdel-Wahab O, et al. IDH mutation impairs histone demethylation and results in a block to cell differentiation. Nature. 2012;483:474–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Intlekofer AM, Wang B, Liu H, Shah H, Carmona-Fontaine C, Rustenburg AS, et al. L-2-hydroxyglutarate production arises from noncanonical enzyme function at acidic pH. Nat Chem Biol. 2017;13:494–500.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Smestad J, Erber L, Chen Y, Maher LJ. Chromatin succinylation correlates with active gene expression and is perturbed by defective TCA cycle metabolism. iScience. 2018;2:63–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Zhang Z, Tan M, Xie Z, Dai L, Chen Y, Zhao Y. Identification of lysine succinylation as a new post-translational modification. Nat Chem Biol. 2011;7. https://doi.org/10.1038/nchembio.495.

  63. Wang Y, Guo YR, Liu K, Yin Z, Liu R, Xia Y, et al. KAT2A coupled with the α-KGDH complex acts as a histone H3 succinyltransferase. Nature. 2017;552:273–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Trefely S, Lovell CD, Snyder NW, Wellen KE. Compartmentalised acyl-CoA metabolism and roles in chromatin regulation. Mol Metab. 2020;38:100941.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Li L, Shi L, Yang S, Yan R, Zhang D, Yang J, et al. SIRT7 is a histone desuccinylase that functionally links to chromatin compaction and genome stability. Nat Commun. 2016;7:12235.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Kiwerska K, Szyfter K. DNA repair in cancer initiation, progression, and therapy—a double-edged sword. J Appl Genet. 2019;60:329–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Chinopoulos C, Seyfried TN. Mitochondrial substrate-level phosphorylation as energy source for glioblastoma: review and hypothesis. ASN Neuro. 2018;10:1759091418818261.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Gao C, Shen Y, Jin F, Miao Y, Qiu X. Cancer stem cells in small cell lung cancer cell line H446: higher dependency on oxidative phosphorylation and mitochondrial substrate-level phosphorylation than non-stem cancer cells. PLOS ONE. 2016;11:e0154576.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Bardella C, Pollard PJ, Tomlinson I. SDH mutations in cancer. Biochim Biophys Acta. 2011;1807:1432–43.

    Article  CAS  PubMed  Google Scholar 

  70. Letouzé E, Martinelli C, Loriot C, Burnichon N, Abermil N, Ottolenghi C, et al. SDH mutations establish a hypermethylator phenotype in paraganglioma. Cancer Cell. 2013;23:739–52.

    Article  PubMed  Google Scholar 

  71. Brahimi-Horn MC, Bellot G, Pouysségur J. Hypoxia and energetic tumour metabolism. Curr Opin Genet Dev. 2011;21:67–72.

    Article  CAS  PubMed  Google Scholar 

  72. MacKenzie ED, Selak MA, Tennant DA, Payne LJ, Crosby S, Frederiksen CM, et al. Cell-permeating α-ketoglutarate derivatives alleviate pseudohypoxia in succinate dehydrogenase-deficient cells. MCB. 2007;27:3282–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Tennant DA, Frezza C, MacKenzie ED, Nguyen QD, Zheng L, Selak MA, et al. Reactivating HIF prolyl hydroxylases under hypoxia results in metabolic catastrophe and cell death. Oncogene. 2009;28:4009–21.

    Article  CAS  PubMed  Google Scholar 

  74. Wu J-Y, Huang T-W, Hsieh Y-T, Wang Y-F, Yen C-C, Lee G-L, et al. Cancer-derived succinate promotes macrophage polarization and cancer metastasis via succinate receptor. Mol Cell. 2020;77:213–27.e5.

    Article  CAS  PubMed  Google Scholar 

  75. Selak MA, Armour SM, MacKenzie ED, Boulahbel H, Watson DG, Mansfield KD, et al. Succinate links TCA cycle dysfunction to oncogenesis by inhibiting HIF-α prolyl hydroxylase. Cancer Cell. 2005;7:77–85.

    Article  CAS  PubMed  Google Scholar 

  76. Schmidt C, Sciacovelli M, Frezza C. Fumarate hydratase in cancer: a multifaceted tumour suppressor. Semin Cell Dev Biol. 2020;98:15–25.

    Article  CAS  PubMed  Google Scholar 

  77. O’Flaherty L, Adam J, Heather LC, Zhdanov AV, Chung Y-L, Miranda MX, et al. Dysregulation of hypoxia pathways in fumarate hydratase-deficient cells is independent of defective mitochondrial metabolism. Hum Mol Genet. 2010;19:3844–51.

    Article  PubMed  PubMed Central  Google Scholar 

  78. Xiao M, Yang H, Xu W, Ma S, Lin H, Zhu H, et al. Inhibition of -KG-dependent histone and DNA demethylases by fumarate and succinate that are accumulated in mutations of FH and SDH tumor suppressors. Genes Dev. 2012;26:1326–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Laukka T, Mariani CJ, Ihantola T, Cao JZ, Hokkanen J, Kaelin WG, et al. Fumarate and succinate regulate expression of hypoxia-inducible genes via TET enzymes. J Biol Chem. 2016;291:4256–65.

    Article  CAS  PubMed  Google Scholar 

  80. Sciacovelli M, Gonçalves E, Johnson TI, Zecchini VR, da Costa ASH, Gaude E, et al. Fumarate is an epigenetic modifier that elicits epithelial-to-mesenchymal transition. Nature. 2016;537:544–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Jiang Y, Qian X, Shen J, Wang Y, Li X, Liu R, et al. Local generation of fumarate promotes DNA repair through inhibition of histone H3 demethylation. Nat Cell Biol. 2015;17:1158–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Chatterjee N, Walker GC. Mechanisms of DNA damage, repair, and mutagenesis. Environ Mol Mutagen. 2017;58:235–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Yogev O, Yogev O, Singer E, Shaulian E, Goldberg M, Fox TD, et al. Fumarase: a mitochondrial metabolic enzyme and a cytosolic/nuclear component of the DNA damage response. PLoS Biol. 2010;8:e1000328.

    Article  PubMed  PubMed Central  Google Scholar 

  84. Sulkowski PL, Sundaram RK, Oeck S, Corso CD, Liu Y, Noorbakhsh S, et al. Krebs cycle-deficient hereditary cancer syndromes are defined by homologous recombination DNA repair defects. Nat Genet. 2018;50:1086.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Johnson TI, Costa ASH, Ferguson AN, Frezza C. Fumarate hydratase loss promotes mitotic entry in the presence of DNA damage after ionising radiation. Cell Death Dis. 2018;9:913.

    Article  PubMed  PubMed Central  Google Scholar 

  86. Alderson NL, Wang Y, Blatnik M, Frizzell N, Walla MD, Lyons TJ, et al. S-(2-Succinyl)cysteine: a novel chemical modification of tissue proteins by a Krebs cycle intermediate. Arch Biochem Biophys. 2006;450:1–8.

    Article  CAS  PubMed  Google Scholar 

  87. Sullivan LB, Martinez-Garcia E, Nguyen H, Mullen AR, Dufour E, Sudarshan S, et al. The proto-oncometabolite fumarate binds glutathione to amplify ROS-dependent signaling. Mol Cell. 2013;51:236–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Yang H, Villani RM, Wang H, Simpson MJ, Roberts MS, Tang M, et al. The role of cellular reactive oxygen species in cancer chemotherapy. J Exp Clin Cancer Res. 2018;37. https://doi.org/10.1186/s13046-018-0909-x.

  89. Saidu NEB, Noé G, Cerles O, Cabel L, Kavian-Tessler N, Chouzenoux S, et al. Dimethyl fumarate controls the NRF2/DJ-1 axis in cancer cells: therapeutic applications. Mol Cancer Ther. 2017;16:529–39.

    Article  CAS  PubMed  Google Scholar 

  90. DeNicola GM, Karreth FA, Humpton TJ, Gopinathan A, Wei C, Frese K, et al. Oncogene-induced Nrf2 transcription promotes ROS detoxification and tumorigenesis. Nature. 2011;475:106–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Bennett Saidu NE, Bretagne M, Mansuet AL, Just P-A, Leroy K, Cerles O, et al. Dimethyl fumarate is highly cytotoxic in KRAS mutated cancer cells but spares non-tumorigenic cells. Oncotarget. 2018;9:9088–99.

    Article  PubMed  PubMed Central  Google Scholar 

  92. Valesky EM, Hrgovic I, Doll M, Wang X-F, Pinter A, Kleemann J, et al. Dimethylfumarate effectively inhibits lymphangiogenesis via p21 induction and G1 cell cycle arrest. Exp Dermatol. 2016;25:200–5.

    Article  CAS  PubMed  Google Scholar 

  93. Kaluzki I, Hailemariam-Jahn T, Doll M, Kaufmann R, Balermpas P, Zöller N, et al. Dimethylfumarate inhibits colorectal carcinoma cell proliferation: evidence for cell cycle arrest, apoptosis and autophagy. Cells. 2019;8. https://doi.org/10.3390/cells8111329.

  94. Liu H, Feng X-D, Yang B, Tong R-L, Lu Y-J, Chen D-Y, et al. Dimethyl fumarate suppresses hepatocellular carcinoma progression via activating SOCS3/JAK1/STAT3 signaling pathway. Am J Transl Res. 2019;11:4713–25.

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Han G, Zhou Q. Dimethylfumarate induces cell cycle arrest and apoptosis via regulating intracellular redox systems in HeLa cells. In Vitro Cell Dev Biol Anim. 2016;52:1034–41.

    Article  CAS  PubMed  Google Scholar 

  96. Xie X, Zhao Y, Ma CY, Xu XM, Zhang YQ, Wang CG, et al. Dimethyl fumarate induces necroptosis in colon cancer cells through GSH depletion/ROS increase/MAPKs activation pathway. Br J Pharmacol. 2015;172:3929–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Zhang B, Tornmalm J, Widengren J, Vakifahmetoglu-Norberg H, Norberg E. Characterization of the role of the malate dehydrogenases to lung tumor cell survival. J Cancer. 2017;8:2088–96.

    Article  PubMed  PubMed Central  Google Scholar 

  98. Hanse EA, Ruan C, Kachman M, Wang D, Lowman XH, Kelekar A. Cytosolic malate dehydrogenase activity helps support glycolysis in actively proliferating cells and cancer. Oncogene. 2017;36:3915–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Lim JKM, Leprivier G. The impact of oncogenic RAS on redox balance and implications for cancer development. Cell Death Dis. 2019;10:1–9.

    Article  Google Scholar 

  100. Kuang Y, Han X, Xu M, Yang Q. Oxaloacetate induces apoptosis in HepG2 cells via inhibition of glycolysis. Cancer Med. 2018;7:1416–29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Sullivan LB, Gui DY, Hosios AM, Bush LN, Freinkman E, Vander Heiden MG. Supporting aspartate biosynthesis is an essential function of respiration in proliferating. Cells Cell. 2015;162:552–63.

    Article  CAS  PubMed  Google Scholar 

  102. Zhao Y, Zhao X, Chen V, Feng Y, Wang L, Croniger C, et al. Colorectal cancers utilize glutamine as an anaplerotic substrate of the TCA cycle in vivo. Sci Rep. 2019;9:19180.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Tardito S, Oudin A, Ahmed SU, Fack F, Keunen O, Zheng L, et al. Glutamine synthetase activity fuels nucleotide biosynthesis and supports growth of glutamine-restricted glioblastoma. Nat Cell Biol. 2015;17:1556–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Hui S, Ghergurovich JM, Morscher RJ, Jang C, Teng X, Lu W, et al. Glucose feeds the TCA cycle via circulating lactate. Nature. 2017;551:115–8.

    Article  PubMed  PubMed Central  Google Scholar 

  105. Faubert B, Li KY, Cai L, Hensley CT, Kim J, Zacharias LG, et al. Lactate metabolism in human lung tumors. Cell. 2017;171:358–71.e9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Rzeski W, Walczak K, Juszczak M, Langner E, PoŻarowski P, Kandefer-Szerszeń M, et al. Alpha-ketoglutarate (AKG) inhibits proliferation of colon adenocarcinoma cells in normoxic conditions. Scand J Gastroenterol. 2012;47:565–71.

    Article  CAS  PubMed  Google Scholar 

  107. Tseng P-L, Wu W-H, Hu T-H, Chen C-W, Cheng H-C, Li C-F, et al. Decreased succinate dehydrogenase B in human hepatocellular carcinoma accelerates tumor malignancy by inducing the Warburg effect. Sci Rep. 2018;8:3081.

    Article  PubMed  PubMed Central  Google Scholar 

  108. Shafer D, Tombes MB, Shrader E, Ryan A, Bandyopadhyay D, Dent P, et al. Phase I trial of dimethyl fumarate, temozolomide, and radiation therapy in glioblastoma. Neuro Oncol Adv. 2020;2. https://doi.org/10.1093/noajnl/vdz052.

Download references

Acknowledgements

The authors apologize to the researchers whose work was not cited because of space limitation. The authors are supported by Louisiana State University (LSU) Feist-Weiller Cancer Center (FWCC) Legacy Funds (149741373A), Intramural Research Council Support (110251225A), and the Micro Seed Funds. Figures are created with BioRender.com. We thank Patrick Simon for his contributions during the editing stage of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shuai Jiang.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Eniafe, J., Jiang, S. The functional roles of TCA cycle metabolites in cancer. Oncogene 40, 3351–3363 (2021). https://doi.org/10.1038/s41388-020-01639-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-020-01639-8

This article is cited by

Search

Quick links