Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

RGS12 is a novel tumor suppressor in osteosarcoma that inhibits YAP-TEAD1-Ezrin signaling

Abstract

Osteosarcoma (OS) is the most common primary malignancy of the bone that predominantly affects children and adolescents. Hippo pathway is a crucial regulator of organ size and tumorigenesis. However, how Hippo pathway regulates the occurrence of osteosarcoma is largely unknown. Here, we reported the regulator of G protein signaling protein 12 (RGS12) is a novel Hippo pathway regulator and tumor suppressor of osteosarcoma. Depletion of Rgs12 promotes osteosarcoma progression and lung metastasis in an orthotopic xenograft mouse model. Our data showed that the knockdown of RGS12 upregulates Ezrin expression through promoting the GNA12/13-RhoA-YAP pathway. Moreover, RGS12 negatively regulates the transcriptional activity of YAP/TEAD1 complex through its PDZ domain function to inhibit the expression and function of the osteosarcoma marker Ezrin. PDZ domain peptides of RGS12 can inhibit the development of intratibial tumor and lung metastases. Collectively, this study identifies that the RGS12 is a novel tumor suppressor in osteosarcoma through inhibiting YAP-TEAD1-Ezrin signaling pathway and provides a proof of principle that targeting RGS12 may be a therapeutic strategy for osteosarcoma.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: RGS12 is downregulated in both human and mouse osteosarcoma tissues.
Fig. 2: RGS12 inhibits osteosarcoma cell migration, invasion, and tumorsphere formation in vitro.
Fig. 3: Knockdown of RGS12 in SaOS2 promotes intratibial primary tumor growth and lung metastasis in SCID mice.
Fig. 4: RGS12 inhibits transcriptional YAP/TEAD1 activity through its PDZ domain function.
Fig. 5: Knockdown of RGS12 induces YAP-dependent Ezrin expression.
Fig. 6: RGS12 negatively regulates Ezrin expression via GNA12/13-RhoA-YAP pathway.
Fig. 7: RGS12 PDZ peptides inhibit osteosarcoma formation and lung metastasis.
Fig. 8: A proposed model to illustrate the regulatory mechanism of RGS12 on Ezrin expression in osteosarcoma.

Similar content being viewed by others

References

  1. Kansara M, Teng MW, Smyth MJ, Thomas DM. Translational biology of osteosarcoma. Nat Rev Cancer. 2014;14:722–35.

    Article  CAS  PubMed  Google Scholar 

  2. Tang QL, Lu JC, Zou CY, Shao Y, Chen Y, Narala S, et al. CDH4 is a novel determinant of osteosarcoma tumorigenesis and metastasis. Oncogene. 2018;37:3617–30.

    Article  CAS  PubMed  Google Scholar 

  3. Wang DY, Wu YN, Huang JQ, Wang W, Xu M, Jia JP, et al. Hippo/YAP signaling pathway is involved in osteosarcoma chemoresistance. Chin J Cancer. 2016;35:1–8.

    Article  Google Scholar 

  4. Harvey KF, Zhang XM, Thomas DM. The Hippo pathway and human cancer. Nat Rev Cancer. 2013;13:246–57.

    Article  CAS  PubMed  Google Scholar 

  5. Yu FX, Guan KL. The Hippo pathway: regulators and regulations. Genes Dev. 2013;27:355–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Zhao B, Tumaneng K, Guan KL. The Hippo pathway in organ size control, tissue regeneration and stem cell self-renewal. Nat cell Biol. 2011;13:877–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Chai JW, Xu SJ, Guo FB. TEAD1 mediates the oncogenic activities of Hippo-YAP1 signaling in osteosarcoma. Biochem Bioph Res Co. 2017;488:297–302.

    Article  CAS  Google Scholar 

  8. Abramow-Newerly M, Roy AA, Nunn C, Chidiac P. RGS proteins have a signalling complex: Interactions between RGS proteins and GPCRs, effectors, and auxiliary proteins. Cell Signal. 2006;18:579–91.

    Article  CAS  PubMed  Google Scholar 

  9. Stewart A, Fisher RA. Introduction: G protein-coupled receptors and RGS proteins. Prog Mol Biol Transl Sci. 2015;133:1–11.

    Article  PubMed  Google Scholar 

  10. Yang SY, Li YP. RGS12 is essential for RANKL-evoked signaling for terminal differentiation of osteoclasts in vitro. J Bone Miner Res. 2007;22:45–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Keinan D, Yang SY, Cohen RE, Yuan X, Liu TJ, Li YP. Role of regulator of G protein signaling proteins in bone. Front Biosci-Landmrk. 2014;19:634–48.

    Article  CAS  Google Scholar 

  12. Li Z, Liu T, Gilmore A, Gomez NM, Fu C, Lim J, et al. Regulator of G protein signaling protein 12 (Rgs12) controls mouse osteoblast differentiation via calcium channel/oscillation and Galphai-ERK signaling. J Bone Min Res. 2019;34:752–64.

    Article  CAS  Google Scholar 

  13. Yu FX, Zhao B, Panupinthu N, Jewell JL, Lian I, Wang LH, et al. Regulation of the hippo-YAP pathway by G-protein-coupled receptor signaling. Cell. 2012;150:780–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Wang YQ, Wang JH, Zhang L, Karatas OF, Shao LJ, Zhang YQ, et al. RGS12 is a novel tumor-suppressor gene in african american prostate cancer that represses AKT and MNX1 expression. Cancer Res. 2017;77:4247–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Chatterjee TK, Fisher RA. RGS12TS-S localizes at nuclear matrix-associated subnuclear structures and represses transcription: structural requirements for subnuclear targeting and transcriptional repression. Mol Cell Biol. 2002;22:4334–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Yuan X, Cao J, Liu T, Li YP, Scannapieco F, He X, et al. Regulators of G protein signaling 12 promotes osteoclastogenesis in bone remodeling and pathological bone loss. Cell Death Differ. 2015;22:2046–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Yang S, Li YP, Liu T, He X, Yuan X, Li C, et al. Mx1-cre mediated Rgs12 conditional knockout mice exhibit increased bone mass phenotype. Genesis. 2013;51:201–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Ng AYH, Li Z, Jones MM, Yang S, Li C, Fu C et al. Regulator of G protein signaling 12 enhances osteoclastogenesis by suppressing Nrf2-dependent antioxidant proteins to promote the generation of reactive oxygen species. Elife. 2019;8:e42591.

  19. Walkley CR, Qudsi R, Sankaran VG, Perry JA, Gostissa M, Roth SI, et al. Conditional mouse osteosarcoma, dependent on p53 loss and potentiated by loss of Rb, mimics the human disease. Genes Dev. 2008;22:1662–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Berman SD, Calo E, Landman AS, Danielian PS, Miller ES, West JC, et al. Metastatic osteosarcoma induced by inactivation of Rb and p53 in the osteoblast lineage. P Natl Acad Sci USA. 2008;105:11851–6.

    Article  CAS  Google Scholar 

  21. Ji Q, Hao X, Meng Y, Zhang M, Desano J, Fan D, et al. Restoration of tumor suppressor miR-34 inhibits human p53-mutant gastric cancer tumorspheres. BMC Cancer. 2008;8:266.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Liu JC, Deng T, Lehal RS, Kim J, Zacksenhaus E. Identification of tumorsphere- and tumor-initiating cells in HER2/Neu-Induced mammary tumors. Cancer Res. 2007;67:8671–81.

    Article  CAS  PubMed  Google Scholar 

  23. Mittal V. Epithelial mesenchymal transition in tumor metastasis. Annu Rev Pathol. 2018;13:395–412.

    Article  CAS  PubMed  Google Scholar 

  24. Lamar JM, Stern P, Liu H, Schindler JW, Jiang ZG, Hynes RO. The Hippo pathway target, YAP, promotes metastasis through its TEAD-interaction domain. P Natl Acad Sci USA. 2012;109:E2441–E2450.

    Article  CAS  Google Scholar 

  25. Fromigue O, Hamidouche Z, Vaudin P, Lecanda F, Patino A, Barbry P, et al. CYR61 downregulation reduces osteosarcoma cell invasion, migration, and metastasis. J Bone Miner Res. 2011;26:1533–42.

    Article  CAS  PubMed  Google Scholar 

  26. Zhang WJ, Gao YJ, Li PX, Shi ZB, Guo T, Li F, et al. VGLL4 functions as a new tumor suppressor in lung cancer by negatively regulating the YAP-TEAD transcriptional complex. Cell Res. 2014;24:331–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Holden JK, Cunningham CN. Targeting the hippo pathway and cancer through the TEAD family of transcription factors. Cancers. 2018;10:81–96.

  28. Mohri Z, Del Rio Hernandez A, Krams R. The emerging role of YAP/TAZ in mechanotransduction. J Thorac Dis. 2017;9:E507–E509.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Zhang L, Yue T, Jiang J. Hippo signaling pathway and organ size control. Fly. 2009;3:68–73.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Yuan X, Cao J, He XN, Serra R, Qu J, Cao X. et al. Ciliary IFT80 balances canonical versus non-canonical hedgehog signalling for osteoblast differentiation. Nat Commun. 2016;7:1024–38.

    Article  Google Scholar 

  31. Zhang WQ, Dai YY, Hsu PC, Wang H, Cheng L, Yang YL, et al. Targeting YAP in malignant pleural mesothelioma. J Cell Mol Med. 2017;21:2663–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Ren L, Khanna C. Role of ezrin in osteosarcoma metastasis. Adv Exp Med Biol. 2014;804:181–201.

    Article  CAS  PubMed  Google Scholar 

  33. Meng Z, Moroishi T, Guan KL. Mechanisms of Hippo pathway regulation. Genes Dev. 2016;30:1–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Mao J, Yuan H, Xie W, Wu D. Guanine nucleotide exchange factor GEF115 specifically mediates activation of Rho and serum response factor by the G protein alpha subunit Galpha13. Proc Natl Acad Sci USA. 1998;95:12973–6.

    Article  CAS  PubMed  Google Scholar 

  35. Jules J, Yang SY, Chen W, Li YP. Role of regulators of G protein signaling proteins in bone physiology and pathophysiology. Prog Mol Biol Transl. 2015;133:47–75.

    Article  Google Scholar 

  36. Cho H, Harrison K, Kehrl JH. Regulators of G protein signaling: potential drug targets for controlling cardiovascular and immune function. Curr drug targets Immune, Endocr Metab Disord. 2004;4:107–18.

    Article  CAS  Google Scholar 

  37. Lee HJ, Zheng JJ. PDZ domains and their binding partners: structure, specificity, and modification. Cell Commun Signal. 2010;8:1–18.

  38. Meyers PA, Schwartz CL, Krailo M, Kleinerman ES, Betcher D, Bernstein ML, et al. Osteosarcoma: a randomized, prospective trial of the addition of ifosfamide and/or muramyl tripeptide to cisplatin, doxorubicin, and high-dose methotrexate. J Clin Oncol. 2005;23:2004–11.

    Article  CAS  PubMed  Google Scholar 

  39. Hurst JH, Hooks SB. Regulator of G-protein signaling (RGS) proteins in cancer biology. Biochemical Pharmacol. 2009;78:1289–97.

    Article  CAS  Google Scholar 

  40. Gross JD, Kaski SW, Schroer AB, Wix KA, Siderovski DP, Setola V. Regulator of G protein signaling-12 modulates the dopamine transporter in ventral striatum and locomotor responses to psychostimulants. J Psychopharmacol. 2018;32:191–203.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Buckbinder L, Velasco-Miguel S, Chen Y, Xu N, Talbott R, Gelbert L, et al. The p53 tumor suppressor targets a novel regulator of G protein signaling. Proc Natl Acad Sci USA. 1997;94:7868–72.

    Article  CAS  PubMed  Google Scholar 

  42. Bouvier C, Macagno N, Nguyen Q, Loundou A, Jiguet-Jiglaire C, Gentet JC, et al. Prognostic value of the Hippo pathway transcriptional coactivators YAP/TAZ and beta1-integrin in conventional osteosarcoma. Oncotarget. 2016;7:64702–10.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Yang Z, Zhang M, Xu K, Liu L, Hou WK, Cai YZ, et al. Knockdown of YAP1 inhibits the proliferation of osteosarcoma cells in vitro and in vivo. Oncol Rep. 2014;32:1265–72.

    Article  CAS  PubMed  Google Scholar 

  44. Zhao B, Lei QY, Guan KL. The Hippo-YAP pathway: new connections between regulation of organ size and cancer. Curr Opin Cell Biol. 2008;20:638–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Wang G, Beier F. Rac1/Cdc42 and RhoA GTPases antagonistically regulate chondrocyte proliferation, hypertrophy, and apoptosis. J Bone Miner Res. 2005;20:1022–31.

    Article  CAS  PubMed  Google Scholar 

  46. Zhang YC, Xia HW, Ge XJ, Chen QJ, Yuan DD, Chen Q, et al. CD44 acts through RhoA to regulate YAP signaling. Cell Signal. 2014;26:2504–13.

    Article  CAS  PubMed  Google Scholar 

  47. Fukuda H, Nakamura S, Chisaki Y, Takada T, Toda Y, Murata H, et al. Daphnetin inhibits invasion and migration of LM8 murine osteosarcoma cells by decreasing RhoA and Cdc42 expression. Biochem Biophys Res Commun. 2016;471:63–67.

    Article  CAS  PubMed  Google Scholar 

  48. Vogt S, Grosse R, Schultz G, Offermanns S. Receptor-dependent RhoA activation in G(12)/G(13)-deficient cells - Genetic evidence for an involvement of G(q)/G(11). J Biol Chem. 2003;278:28743–9.

    Article  CAS  PubMed  Google Scholar 

  49. Bradley SJ, Wiegman CH, Iglesias MM, Kong KC, Butcher AJ, Plouffe B, et al. Mapping physiological G protein-coupled receptor signaling pathways reveals a role for receptor phosphorylation in airway contraction. Proc Natl Acad Sci USA. 2016;113:4524–9.

    Article  CAS  PubMed  Google Scholar 

  50. Khanna C, Wan XL, Bose S, Cassaday R, Olomu O, Mendoza A, et al. The membrane-cytoskeleton linker ezrin is necessary for osteosarcoma metastasis. Nat Med. 2004;10:182–6.

    Article  CAS  PubMed  Google Scholar 

  51. Rozengurt E, Sinnett-Smith J, Eibl G. Yes-associated protein (YAP) in pancreatic cancer: at the epicenter of a targetable signaling network associated with patient survival. Signal Transduct Tar. 2018;3:1038–48.

    Google Scholar 

  52. Sabile AA, Arlt MJ, Muff R, Bode B, Langsam B, Bertz J, et al. Cyr61 expression in osteosarcoma indicates poor prognosis and promotes intratibial growth and lung metastasis in mice. J Bone Miner Res. 2012;27:58–67.

    Article  CAS  PubMed  Google Scholar 

  53. Igarashi K, Kawaguchi K, Murakami T, Miyake K, Kiyuna T, Miyake M, et al. Patient-derived orthotopic xenograft models of sarcoma. Cancer Lett. 2020;469:332–9.

    Article  CAS  PubMed  Google Scholar 

  54. Brusgard JL, Choe M, Chumsri S, Renoud K, MacKerell AD Jr, Sudol M, et al. RUNX2 and TAZ-dependent signaling pathways regulate soluble E-Cadherin levels and tumorsphere formation in breast cancer cells. Oncotarget. 2015;6:28132–50.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Li Y, Hu N, Yang D, Oxenkrug G, Yang Q. Regulating the balance between the kynurenine and serotonin pathways of tryptophan metabolism. FEBS J. 2017;284:948–66.

    Article  CAS  PubMed  Google Scholar 

  56. Xu MZ, Chan SW, Liu AM, Wong KF, Fan ST, Chen J, et al. AXL receptor kinase is a mediator of YAP-dependent oncogenic functions in hepatocellular carcinoma. Oncogene. 2011;30:1229–40.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS, AR061052), the National Institute on Aging (NIA, AG048388) awarded to SY.

Author information

Authors and Affiliations

Authors

Contributions

SY-Y and YL conceived this study, generated hypotheses, and designed the experiments. YL, ML, ST-Y, AMF, and TSKE performed the experiments and analyzed the data. SY-Y and YL wrote, reviewed, and edited the paper. SY-Y supervised the project.

Corresponding author

Correspondence to Shuying Yang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Liu, M., Yang, S. et al. RGS12 is a novel tumor suppressor in osteosarcoma that inhibits YAP-TEAD1-Ezrin signaling. Oncogene 40, 2553–2566 (2021). https://doi.org/10.1038/s41388-020-01599-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-020-01599-z

This article is cited by

Search

Quick links