Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

STAT3 promotes melanoma metastasis by CEBP-induced repression of the MITF pathway

Abstract

Metastatic melanoma is hallmarked by its ability of phenotype switching to more slowly proliferating, but highly invasive cells. Here, we tested the impact of signal transducer and activator of transcription 3 (STAT3) on melanoma progression in association with melanocyte inducing transcription factor (MITF) expression levels. We established a mouse melanoma model for deleting Stat3 in melanocytes with specific expression of human hyperactive NRASQ61K in an Ink4a-deficient background, two frequent driver mutations in human melanoma. Mice devoid of Stat3 showed early disease onset with higher proliferation in primary tumors, but displayed significantly diminished lung, brain, and liver metastases. Whole-genome expression profiling of tumor-derived cells also showed a reduced invasion phenotype, which was further corroborated by 3D melanoma model analysis. Notably, loss or knockdown of STAT3 in mouse or human cells resulted in the upregulation of MITF and induction of cell proliferation. Mechanistically we show that STAT3-induced CAAT Box Enhancer Binding Protein (CEBP) expression was sufficient to suppress MITF transcription. Epigenetic analysis by ATAC-seq confirmed that CEBPa/b binding to the MITF enhancer region silenced the MITF locus. Finally, by classification of patient-derived melanoma samples, we show that STAT3 and MITF act antagonistically and hence contribute differentially to melanoma progression. We conclude that STAT3 is a driver of the metastatic process in melanoma and able to antagonize MITF via direct induction of CEBP family member transcription.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: STAT3 knockout in melanoma induced earlier tumor onset, but reduced metastasis.
Fig. 2: Loss of Stat3-induced MITF pathway in melanoma cells.
Fig. 3: Transcriptome analysis and functional testing revealed abrogated invasion and increased proliferation after STAT3 knockout.
Fig. 4: Expression of receptor tyrosine kinases displays a YIN/YANG dualism corresponding to STAT3/MITF interplay.
Fig. 5: MITF expression depends on the STAT3 target Cebpa and Cebpb.
Fig. 6: Human melanoma cells induce MITF and proliferation upon loss of STAT3.
Fig. 7: Human patients with STAT3low, CEBPAlow, CEBPBlow, and MITFhigh signature show worsened clinical outcome.

References

  1. 1.

    Siegel RL, Miller KD, Jemal A. Cancer statistics, 2016. CA Cancer J Clin. 2016;66:7–30.

    PubMed  Google Scholar 

  2. 2.

    Hoek KS, Eichhoff OM, Schlegel NC, Dobbeling U, Kobert N, Schaerer L, et al. In vivo switching of human melanoma cells between proliferative and invasive states. Cancer Res. 2008;68:650–6.

    CAS  PubMed  Google Scholar 

  3. 3.

    Kemper K, de Goeje PL, Peeper DS, van Amerongen R. Phenotype switching: tumor cell plasticity as a resistance mechanism and target for therapy. Cancer Res. 2014;74:5937–41.

    CAS  PubMed  Google Scholar 

  4. 4.

    Li FZ, Dhillon AS, Anderson RL, McArthur G, Ferrao PT. Phenotype switching in melanoma: implications for progression and therapy. Front Oncol. 2015;5:31.

    PubMed  PubMed Central  Google Scholar 

  5. 5.

    Yasumoto K, Yokoyama K, Shibata K, Tomita Y, Shibahara S. Microphthalmia-associated transcription factor as a regulator for melanocyte-specific transcription of the human tyrosinase gene. Mol Cell Biol. 1994;14:8058–70.

    CAS  PubMed  PubMed Central  Google Scholar 

  6. 6.

    Hemesath TJ, Steingrimsson E, McGill G, Hansen MJ, Vaught J, Hodgkinson CA, et al. microphthalmia, a critical factor in melanocyte development, defines a discrete transcription factor family. Genes Dev. 1994;8:2770–80.

    CAS  PubMed  Google Scholar 

  7. 7.

    Steingrimsson E, Copeland NG, Jenkins NA. Melanocytes and the microphthalmia transcription factor network. Annu Rev Genet. 2004;38:365–411.

    CAS  PubMed  Google Scholar 

  8. 8.

    Carreira S, Goodall J, Denat L, Rodriguez M, Nuciforo P, Hoek KS, et al. Mitf regulation of Dia1 controls melanoma proliferation and invasiveness. Genes Dev. 2006;20:3426–39.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. 9.

    Goodall J, Carreira S, Denat L, Kobi D, Davidson I, Nuciforo P, et al. Brn-2 represses microphthalmia-associated transcription factor expression and marks a distinct subpopulation of microphthalmia-associated transcription factor-negative melanoma cells. Cancer Res. 2008;68:7788–94.

    CAS  PubMed  Google Scholar 

  10. 10.

    Verfaillie A, Imrichova H, Atak ZK, Dewaele M, Rambow F, Hulselmans G, et al. Decoding the regulatory landscape of melanoma reveals TEADS as regulators of the invasive cell state. Nat Commun. 2015;6:6683.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. 11.

    Kortylewski M, Jove R, Yu H. Targeting STAT3 affects melanoma on multiple fronts. Cancer Metastasis Rev. 2005;24:315–27.

    CAS  PubMed  Google Scholar 

  12. 12.

    Fofaria NM, Srivastava SK. Critical role of STAT3 in melanoma metastasis through anoikis resistance. Oncotarget. 2014;5:7051–64.

    PubMed  PubMed Central  Google Scholar 

  13. 13.

    Niu G, Heller R, Catlett-Falcone R, Coppola D, Jaroszeski M, Dalton W, et al. Gene therapy with dominant-negative Stat3 suppresses growth of the murine melanoma B16 tumor in vivo. Cancer Res. 1999;59:5059–63.

    CAS  PubMed  Google Scholar 

  14. 14.

    Kortylewski M, Heinrich PC, Mackiewicz A, Schniertshauer U, Klingmuller U, Nakajima K, et al. Interleukin-6 and oncostatin M-induced growth inhibition of human A375 melanoma cells is STAT-dependent and involves upregulation of the cyclin-dependent kinase inhibitor p27/Kip1. Oncogene. 1999;18:3742–53.

    CAS  PubMed  Google Scholar 

  15. 15.

    Lacreusette A, Nguyen JM, Pandolfino MC, Khammari A, Dreno B, Jacques Y, et al. Loss of oncostatin M receptor beta in metastatic melanoma cells. Oncogene. 2007;26:881–92.

    CAS  PubMed  Google Scholar 

  16. 16.

    Grabner B, Schramek D, Mueller KM, Moll HP, Svinka J, Hoffmann T, et al. Disruption of STAT3 signalling promotes KRAS-induced lung tumorigenesis. Nat Commun. 2015;6:6285.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. 17.

    Musteanu M, Blaas L, Mair M, Schlederer M, Bilban M, Tauber S, et al. Stat3 is a negative regulator of intestinal tumor progression in Apc(Min) mice. Gastroenterology. 2010;138:1003–11.e1-5.

    CAS  PubMed  Google Scholar 

  18. 18.

    Pencik J, Schlederer M, Gruber W, Unger C, Walker SM, Chalaris A, et al. STAT3 regulated ARF expression suppresses prostate cancer metastasis. Nat Commun. 2015;6:7736.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. 19.

    Ackermann J, Frutschi M, Kaloulis K, McKee T, Trumpp A, Beermann F. Metastasizing melanoma formation caused by expression of activated N-RasQ61K on an INK4a-deficient background. Cancer Res. 2005;65:4005–11.

    CAS  PubMed  Google Scholar 

  20. 20.

    Cancer Genome Atlas Network. Genomic classification of cutaneous melanoma. Cell. 2015;161:1681–96.

  21. 21.

    Alonzi T, Maritano D, Gorgoni B, Rizzuto G, Libert C, Poli V. Essential role of STAT3 in the control of the acute-phase response as revealed by inducible gene inactivation [correction of activation] in the liver. Mol Cell Biol. 2001;21:1621–32.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. 22.

    Luciani F, Champeval D, Herbette A, Denat L, Aylaj B, Martinozzi S, et al. Biological and mathematical modeling of melanocyte development. Development. 2011;138:3943–54.

    CAS  PubMed  Google Scholar 

  23. 23.

    Jeffs AR, Glover AC, Slobbe LJ, Wang L, He S, Hazlett JA, et al. A gene expression signature of invasive potential in metastatic melanoma cells. PLoS ONE. 2009;4:e8461.

    PubMed  PubMed Central  Google Scholar 

  24. 24.

    Strub T, Giuliano S, Ye T, Bonet C, Keime C, Kobi D, et al. Essential role of microphthalmia transcription factor for DNA replication, mitosis and genomic stability in melanoma. Oncogene. 2011;30:2319–32.

    CAS  PubMed  Google Scholar 

  25. 25.

    Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA, et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci USA. 2005;102:15545–50.

    CAS  PubMed  Google Scholar 

  26. 26.

    Matsuda T, Nakamura T, Nakao K, Arai T, Katsuki M, Heike T, et al. STAT3 activation is sufficient to maintain an undifferentiated state of mouse embryonic stem cells. EMBO J. 1999;18:4261–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. 27.

    Aguirre-Gamboa R, Gomez-Rueda H, Martinez-Ledesma E, Martinez-Torteya A, Chacolla-Huaringa R, Rodriguez-Barrientos A, et al. SurvExpress: an online biomarker validation tool and database for cancer gene expression data using survival analysis. PLoS ONE. 2013;8:e74250.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. 28.

    Lambert AW, Pattabiraman DR, Weinberg RA. Emerging biological principles of metastasis. Cell. 2017;168:670–91.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. 29.

    Igelmann S, Neubauer HA, Ferbeyre G. STAT3 and STAT5 activation in solid cancers. Cancers (Basel). 2019;11:1428–19.

    CAS  Google Scholar 

  30. 30.

    Ladstein RG, Bachmann IM, Straume O, Akslen LA. Ki-67 expression is superior to mitotic count and novel proliferation markers PHH3, MCM4 and mitosin as a prognostic factor in thick cutaneous melanoma. BMC Cancer. 2010;10:140.

    PubMed  PubMed Central  Google Scholar 

  31. 31.

    Tu TJ, Ma MW, Monni S, Rose AE, Yee H, Darvishian F, et al. A high proliferative index of recurrent melanoma is associated with worse survival. Oncology. 2011;80:181–7.

    PubMed  PubMed Central  Google Scholar 

  32. 32.

    Garraway LA, Widlund HR, Rubin MA, Getz G, Berger AJ, Ramaswamy S, et al. Integrative genomic analyses identify MITF as a lineage survival oncogene amplified in malignant melanoma. Nature. 2005;436:117–22.

    CAS  PubMed  Google Scholar 

  33. 33.

    Goding CR, Arnheiter H. MITF-the first 25 years. Genes Dev. 2019;33:983–1007.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. 34.

    Yamada T, Tobita K, Osada S, Nishihara T, Imagawa M. CCAAT/enhancer-binding protein delta gene expression is mediated by APRF/STAT3. J Biochem. 1997;121:731–8.

    CAS  PubMed  Google Scholar 

  35. 35.

    Lee M, Goodall J, Verastegui C, Ballotti R, Goding CR. Direct regulation of the microphthalmia promoter by Sox10 links Waardenburg-Shah syndrome (WS4)-associated hypopigmentation and deafness to WS2. J Biol Chem. 2000;275:37978–83.

    CAS  PubMed  Google Scholar 

  36. 36.

    Verastegui C, Bille K, Ortonne JP, Ballotti R. Regulation of the microphthalmia-associated transcription factor gene by the Waardenburg syndrome type 4 gene, SOX10. J Biol Chem. 2000;275:30757–60.

    CAS  PubMed  Google Scholar 

  37. 37.

    Qi X, Hong J, Chaves L, Zhuang Y, Chen Y, Wang D, et al. Antagonistic regulation by the transcription factors C/EBPalpha and MITF specifies basophil and mast cell fates. Immunity. 2013;39:97–110.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. 38.

    Shenoy AK, Jin Y, Luo H, Tang M, Pampo C, Shao R, et al. Epithelial-to-mesenchymal transition confers pericyte properties on cancer cells. J Clin Invest. 2016;126:4174–86.

    PubMed  PubMed Central  Google Scholar 

  39. 39.

    Ohanna M, Cheli Y, Bonet C, Bonazzi VF, Allegra M, Giuliano S, et al. Secretome from senescent melanoma engages the STAT3 pathway to favor reprogramming of naive melanoma towards a tumor-initiating cell phenotype. Oncotarget. 2013;4:2212–24.

    PubMed  PubMed Central  Google Scholar 

  40. 40.

    Steder M, Alla V, Meier C, Spitschak A, Pahnke J, Furst K, et al. DNp73 exerts function in metastasis initiation by disconnecting the inhibitory role of EPLIN on IGF1R-AKT/STAT3 signaling. Cancer Cell. 2013;24:512–27.

    CAS  PubMed  Google Scholar 

  41. 41.

    Lee JW, Stone ML, Porrett PM, Thomas SK, Komar CA, Li JH, et al. Hepatocytes direct the formation of a pro-metastatic niche in the liver. Nature. 2019;567:249–52.

    CAS  PubMed  PubMed Central  Google Scholar 

  42. 42.

    Cao HH, Chu JH, Kwan HY, Su T, Yu H, Cheng CY, et al. Inhibition of the STAT3 signaling pathway contributes to apigenin-mediated anti-metastatic effect in melanoma. Sci Rep. 2016;6:21731.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. 43.

    Weidenfeld K, Barkan D. EMT and stemness in tumor dormancy and outgrowth: are they intertwined processes? Front Oncol. 2018;8:381.

    PubMed  PubMed Central  Google Scholar 

  44. 44.

    Tang Y, Luo Y, Jiang Z, Ma Y, Lin CJ, Kim C, et al. Jak/Stat3 signaling promotes somatic cell reprogramming by epigenetic regulation. Stem Cells. 2012;30:2645–56.

    CAS  PubMed  Google Scholar 

  45. 45.

    Huser L, Sachindra S, Granados K, Federico A, Larribere L, Novak D, et al. SOX2-mediated upregulation of CD24 promotes adaptive resistance toward targeted therapy in melanoma. Int J Cancer. 2018;143:3131–42.

    PubMed  Google Scholar 

  46. 46.

    Gong AH, Wei P, Zhang S, Yao J, Yuan Y, Zhou AD, et al. FoxM1 drives a feed-forward STAT3-activation signaling loop that promotes the self-renewal and tumorigenicity of glioblastoma stem-like cells. Cancer Res. 2015;75:2337–48.

    CAS  PubMed  PubMed Central  Google Scholar 

  47. 47.

    He W, Wu J, Shi J, Huo YM, Dai W, Geng J, et al. IL22RA1/STAT3 signaling promotes stemness and tumorigenicity in pancreatic cancer. Cancer Res. 2018;78:3293–305.

    CAS  PubMed  Google Scholar 

  48. 48.

    Tang Y, Kitisin K, Jogunoori W, Li C, Deng CX, Mueller SC, et al. Progenitor/stem cells give rise to liver cancer due to aberrant TGF-beta and IL-6 signaling. Proc Natl Acad Sci USA. 2008;105:2445–50.

    CAS  PubMed  Google Scholar 

  49. 49.

    Kulesza DW, Przanowski P, Kaminska B. Knockdown of STAT3 targets a subpopulation of invasive melanoma stem-like cells. Cell Biol Int. 2019;43:613–22.

    CAS  PubMed  Google Scholar 

  50. 50.

    Anastas JN, Kulikauskas RM, Tamir T, Rizos H, Long GV, von Euw EM, et al. WNT5A enhances resistance of melanoma cells to targeted BRAF inhibitors. J Clin Invest. 2014;124:2877–90.

    CAS  PubMed  PubMed Central  Google Scholar 

  51. 51.

    Kudo-Saito C, Shirako H, Takeuchi T, Kawakami Y. Cancer metastasis is accelerated through immunosuppression during Snail-induced EMT of cancer cells. Cancer Cell. 2009;15:195–206.

    CAS  PubMed  Google Scholar 

  52. 52.

    Bu X, Mahoney KM, Freeman GJ. Learning from PD-1 resistance: new combination strategies. Trends Mol Med. 2016;22:448–51.

    CAS  PubMed  PubMed Central  Google Scholar 

  53. 53.

    Ji Z, Erin Chen Y, Kumar R, Taylor M, Jenny Njauw CN, Miao B, et al. MITF modulates therapeutic resistance through EGFR signaling. J Invest Dermatol. 2015;135:1863–72.

    CAS  PubMed  PubMed Central  Google Scholar 

  54. 54.

    Mirea MA, Eckensperger S, Hengstschlager M, Mikula M. Insights into differentiation of melanocytes from human stem cells and their relevance for melanoma treatment. Cancers (Basel). 2020;12:2508–19.

    CAS  Google Scholar 

  55. 55.

    Kinslechner K, Schutz B, Pistek M, Rapolter P, Weitzenbock HP, Hundsberger H. et al. Loss of SR-BI down-regulates MITF and suppresses extracellular vesicle release in human melanoma. Int J Mol Sci. 2019;20:1063–12.

    CAS  PubMed Central  Google Scholar 

  56. 56.

    Yokoyama S, Feige E, Poling LL, Levy C, Widlund HR, Khaled M, et al. Pharmacologic suppression of MITF expression via HDAC inhibitors in the melanocyte lineage. Pigment Cell Melanoma Res. 2008;21:457–63.

    CAS  PubMed  PubMed Central  Google Scholar 

  57. 57.

    Serrano M, Lee H, Chin L, Cordon-Cardo C, Beach D, DePinho RA. Role of the INK4a locus in tumor suppression and cell mortality. Cell. 1996;85:27–37.

    CAS  PubMed  Google Scholar 

  58. 58.

    Delmas V, Martinozzi S, Bourgeois Y, Holzenberger M, Larue L. Cre-mediated recombination in the skin melanocyte lineage. Genesis. 2003;36:73–80.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Safia Zahma, Birgit Schütz, Eva Bauer, Michaela Schlederer, and Karin Neumüller for excellent technical assistance. We also thank the Biomedical Sequencing Facility at CeMM for assistance with next-generation sequencing. VP was supported by the grant AIRC IG16930, AS, OE, RZ, and RM were supported by a private melanoma research donation from Liechtenstein, RM was further supported by two network grants SFB-F061 and SFB-F047, and RS, KK, MV, and MM were supported by P 25336-B13, all from the Austrian Science Fund (FWF).

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Mario Mikula or Richard Moriggl.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Swoboda, A., Soukup, R., Eckel, O. et al. STAT3 promotes melanoma metastasis by CEBP-induced repression of the MITF pathway. Oncogene 40, 1091–1105 (2021). https://doi.org/10.1038/s41388-020-01584-6

Download citation

Search

Quick links