Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

RETRACTED ARTICLE: Lymphatic metastasis-related TBL1XR1 enhances stemness and metastasis in gastric cancer stem-like cells by activating ERK1/2-SOX2 signaling

This article was retracted on 20 February 2024

This article has been updated

Abstract

The poor prognosis of gastric cancer (GC) results largely from metastasis and chemotherapy resistance. Toward novel therapeutic strategies that target or evade these phenomena, we evaluated the function of the transcriptional regulator transducin (β)-like 1 X-linked receptor 1 (TBL1XR1) in GC cells, including stem-like cells. In this study, the correlation of expression of TBL1XR1 and clinical features and GC patients’ outcomes was evaluated. Knockdown or exogenous expression of TBL1XR1 was combined with in vitro (2D and 3D cultures) and in vivo (mouse lung and lymphatic metastasis models) assays to evaluate the function of TBL1XR1. TBL1XR1’s downstream signaling was delineated by phospho-kinase array and knockdown of candidate mediators. Analysis of clinical data showed that TBL1XR1 overexpression was correlated with worse prognosis. Functional assays showed that TBL1XR1 promoted stemness, epithelial–mesenchymal transition (EMT), and lung and lymphatic metastasis in GC cells. TBL1XR1 activated ERK1/2-Sox2 signaling and was dependent on signaling via PI3K/AKT, in GC stem-like cells distinguished by CD44 expression. Moreover, inhibition of these signaling proteins reversed chemoresistance in in vitro and in vivo models. Taken together, our results indicate that TBL1XR1 promotes stemness and metastasis in GC, making it a potential prognostic indicator. The PI3K/AKT-TBL1XR1-ERK1/2-Sox2 axis may represent a target for the treatment of GC.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Expression of transducin (β)-like 1 X-linked receptor 1 (TBL1XR1) and CD44 in tumors correlates with overall survival of GC patients.
Fig. 2: TBL1XR1 expression correlates with CSC phenotypes, EMT, and invasive properties in gastric epithelial and GC cells.
Fig. 3: TBL1XR1 controls CSC phenotypes and EMT in human GC cells.
Fig. 4: TBL1XR1 is regulated by PI3K/AKT and regulates ERK1/2 in human GC cells.
Fig. 5: TBL1XR1 knockdown reverses chemoresistance in vitro and in mouse xenograft models.
Fig. 6: TBL1XR1 knockdown reduces EMT and CSC phenotypes in mouse organoids and inhibits lung metastasis.
Fig. 7: TBL1XR1 regulates lymphatic metastasis in vitro and in vivo.

Similar content being viewed by others

Change history

References

  1. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018;68:394–424.

    Article  PubMed  Google Scholar 

  2. Zhang H, Jiang H, Zhang H, Liu J, Hu X, Chen L. Ribophorin II potentiates P-glycoprotein- and ABCG2-mediated multidrug resistance via activating ERK pathway in gastric cancer. Int J Biol Macromol. 2019;128:574–82.

    Article  CAS  PubMed  Google Scholar 

  3. Dawood S, Austin L, Cristofanilli M. Cancer stem cells: implications for cancer therapy. Oncology. 2014;28:1101–7, 1110.

    PubMed  Google Scholar 

  4. Garcia-Mayea Y, Mir C, Masson F, Paciucci R, ME LL. Insights into new mechanisms and models of cancer stem cell multidrug resistance. Semin Cancer Biol. 2019.

  5. Takaishi S, Okumura T, Tu S, Wang SS, Shibata W, Vigneshwaran R, et al. Identification of gastric cancer stem cells using the cell surface marker CD44. Stem cells. 2009;27:1006–20.

    Article  CAS  PubMed  Google Scholar 

  6. Yoon C, Park DJ, Schmidt B, Thomas NJ, Lee HJ, Kim TS, et al. CD44 expression denotes a subpopulation of gastric cancer cells in which Hedgehog signaling promotes chemotherapy resistance. Clin Cancer Res. 2014;20:3974–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Bekaii-Saab T, El-Rayes B. Identifying and targeting cancer stem cells in the treatment of gastric cancer. Cancer. 2017;123:1303–12.

    Article  PubMed  Google Scholar 

  8. Nguyen PH, Giraud J, Chambonnier L, Dubus P, Wittkop L, Belleannee G, et al. Characterization of biomarkers of tumorigenic and chemoresistant cancer stem cells in human gastric carcinoma. Clin Cancer Res. 2017;23:1586–97.

    Article  CAS  PubMed  Google Scholar 

  9. Han ME, Jeon TY, Hwang SH, Lee YS, Kim HJ, Shim HE, et al. Cancer spheres from gastric cancer patients provide an ideal model system for cancer stem cell research. Cell Mol Life Sci. 2011;68:3589–605.

    Article  CAS  PubMed  Google Scholar 

  10. Zhang J, Kalkum M, Chait BT, Roeder RG. The N-CoR-HDAC3 nuclear receptor corepressor complex inhibits the JNK pathway through the integral subunit GPS2. Mol Cell. 2002;9:611–23.

    Article  CAS  PubMed  Google Scholar 

  11. Li X, Liang W, Liu J, Lin C, Wu S, Song L, et al. Transducin (beta)-like 1 X-linked receptor 1 promotes proliferation and tumorigenicity in human breast cancer via activation of beta-catenin signaling. Breast cancer Res. 2014;16:465.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Liu L, Lin C, Liang W, Wu S, Liu A, Wu J, et al. TBL1XR1 promotes lymphangiogenesis and lymphatic metastasis in esophageal squamous cell carcinoma. Gut. 2015;64:26–36.

    Article  CAS  PubMed  Google Scholar 

  13. Chen SP, Yang Q, Wang CJ, Zhang LJ, Fang Y, Lei FY, et al. Transducin beta-like 1 X-linked receptor 1 suppresses cisplatin sensitivity in nasopharyngeal carcinoma via activation of NF-kappaB pathway. Mol Cancer. 2014;13:195.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Zhou Q, Wang X, Yu Z, Wu X, Chen X, Li J, et al. Transducin (beta)-like 1 X-linked receptor 1 promotes gastric cancer progression via the ERK1/2 pathway. Oncogene. 2017;36:1873–86.

    Article  CAS  PubMed  Google Scholar 

  15. Choi HK, Choi KC, Yoo JY, Song M, Ko SJ, Kim CH, et al. Reversible SUMOylation of TBL1-TBLR1 regulates beta-catenin-mediated Wnt signaling. Mol Cell. 2011;43:203–16.

    Article  CAS  PubMed  Google Scholar 

  16. Wang J, Ou J, Guo Y, Dai T, Li X, Liu J, et al. TBLR1 is a novel prognostic marker and promotes epithelial-mesenchymal transition in cervical cancer. Br J Cancer. 2014;111:112–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Xi X, Wu Q, Bao Y, Lin M, Zhong X, Dai X, et al. Overexpression of TBL1XR1 confers tumorigenic capability and promotes recurrence of osteosarcoma. Eur J Pharmacol. 2019;844:259–67.

    Article  CAS  PubMed  Google Scholar 

  18. Etoh T, Inoue H, Tanaka S, Barnard GF, Kitano S, Mori M. Angiopoietin-2 is related to tumor angiogenesis in gastric carcinoma: possible in vivo regulation via induction of proteases. Cancer Res. 2001;61:2145–53.

    CAS  PubMed  Google Scholar 

  19. Hao S, Yang Y, Liu Y, Yang S, Wang G, Xiao J, et al. JAM-C promotes lymphangiogenesis and nodal metastasis in non-small cell lung cancer. Tumour Biol. 2014;35:5675–87.

    Article  CAS  PubMed  Google Scholar 

  20. Herrera B, van Dinther M, Ten Dijke P, Inman GJ. Autocrine bone morphogenetic protein-9 signals through activin receptor-like kinase-2/Smad1/Smad4 to promote ovarian cancer cell proliferation. Cancer Res. 2009;69:9254–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Hu J, Ye H, Fu A, Chen X, Wang Y, Chen X, et al. Deguelin–an inhibitor to tumor lymphangiogenesis and lymphatic metastasis by downregulation of vascular endothelial cell growth factor-D in lung tumor model. Int J Cancer. 2010;127:2455–66.

    Article  CAS  PubMed  Google Scholar 

  22. Khromova N, Kopnin P, Rybko V, Kopnin BP. Downregulation of VEGF-C expression in lung and colon cancer cells decelerates tumor growth and inhibits metastasis via multiple mechanisms. Oncogene. 2012;31:1389–97.

    Article  CAS  PubMed  Google Scholar 

  23. Mashino K, Sadanaga N, Yamaguchi H, Tanaka F, Ohta M, Shibuta K, et al. Expression of chemokine receptor CCR7 is associated with lymph node metastasis of gastric carcinoma. Cancer Res. 2002;62:2937–41.

    CAS  PubMed  Google Scholar 

  24. Nasarre P, Gemmill RM, Potiron VA, Roche J, Lu X, Baron AE, et al. Neuropilin-2 Is upregulated in lung cancer cells during TGF-beta1-induced epithelial-mesenchymal transition. Cancer Res. 2013;73:7111–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Ono H, Imoto I, Kozaki K, Tsuda H, Matsui T, Kurasawa Y, et al. SIX1 promotes epithelial-mesenchymal transition in colorectal cancer through ZEB1 activation. Oncogene. 2012;31:4923–34.

    Article  CAS  PubMed  Google Scholar 

  26. Skog M, Bono P, Lundin M, Lundin J, Louhimo J, Linder N, et al. Expression and prognostic value of transcription factor PROX1 in colorectal cancer. Br J Cancer. 2011;105:1346–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Turk CM, Fagan-Solis KD, Williams KE, Gozgit JM, Smith-Schneider S, Marconi SA, et al. Paralemmin-1 is over-expressed in estrogen-receptor positive breast cancers. Cancer cell Int. 2012;12:17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Wildi S, Kleeff J, Maruyama H, Maurer CA, Buchler MW, Korc M. Overexpression of activin A in stage IV colorectal cancer. Gut. 2001;49:409–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Zaytseva YY, Rychahou PG, Gulhati P, Elliott VA, Mustain WC, O’Connor K, et al. Inhibition of fatty acid synthase attenuates CD44-associated signaling and reduces metastasis in colorectal cancer. Cancer Res. 2012;72:1504–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Xia P, Xu XY. PI3K/Akt/mTOR signaling pathway in cancer stem cells: from basic research to clinical application. Am J Cancer Res. 2015;5:1602–9.

    PubMed  PubMed Central  Google Scholar 

  31. Dubrovska A, Kim S, Salamone RJ, Walker JR, Maira SM, Garcia-Echeverria C, et al. The role of PTEN/Akt/PI3K signaling in the maintenance and viability of prostate cancer stem-like cell populations. Proc Natl Acad Sci USA. 2009;106:268–73.

    Article  ADS  CAS  PubMed  Google Scholar 

  32. Wang YK, Zhu YL, Qiu FM, Zhang T, Chen ZG, Zheng S, et al. Activation of Akt and MAPK pathways enhances the tumorigenicity of CD133+ primary colon cancer cells. Carcinogenesis. 2010;31:1376–80.

    Article  CAS  PubMed  Google Scholar 

  33. Yoon C, Cho SJ, Aksoy BA, Park do J, Schultz N, Ryeom SW, et al. Chemotherapy resistance in diffuse-type gastric adenocarcinoma is mediated by RhoA activation in cancer stem-like cells. Clin Cancer Res. 2016;22:971–83.

    Article  CAS  PubMed  Google Scholar 

  34. Till JE, Yoon C, Kim BJ, Roby K, Addai P, Jonokuchi E, et al. Oncogenic KRAS and p53 loss drive gastric tumorigenesis in mice that can be attenuated by E-cadherin expression. Cancer Res. 2017;77:5349–59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Lee KM, Giltnane JM, Balko JM, Schwarz LJ, Guerrero-Zotano AL, Hutchinson KE, et al. MYC and MCL1 cooperatively promote chemotherapy-resistant breast cancer stem cells via regulation of mitochondrial oxidative phosphorylation. Cell Metab. 2017;26:633–.e637.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Samanta D, Gilkes DM, Chaturvedi P, Xiang L, Semenza GL. Hypoxia-inducible factors are required for chemotherapy resistance of breast cancer stem cells. Proc Natl Acad Sci USA. 2014;111:E5429–38.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  37. Ruan X, Liu A, Zhong M, Wei J, Zhang W, Rong Y, et al. Silencing LGR6 attenuates stemness and chemoresistance via inhibiting Wnt/beta-catenin signaling in ovarian cancer. Mol Ther Oncolytics. 2019;14:94–106.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. An Y, Wang B, Wang X, Dong G, Jia J, Yang Q. SIRT1 inhibits chemoresistance and cancer stemness of gastric cancer by initiating an AMPK/FOXO3 positive feedback loop. Cell Death Dis. 2020;11:115.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Shibue T, Weinberg RA. EMT, CSCs, and drug resistance: the mechanistic link and clinical implications. Nat Rev Clin Oncol. 2017;14:611–29.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Sciacovelli M, Frezza C. Metabolic reprogramming and epithelial-to-mesenchymal transition in cancer. FEBS J. 2017;284:3132–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Katso R, Okkenhaug K, Ahmadi K, White S, Timms J, Waterfield MD. Cellular function of phosphoinositide 3-kinases: implications for development, homeostasis, and cancer. Annu Rev Cell Dev Biol. 2001;17:615–75.

    Article  CAS  PubMed  Google Scholar 

  42. Yang J, Nie J, Ma X, Wei Y, Peng Y, Wei X. Targeting PI3K in cancer: mechanisms and advances in clinical trials. Mol Cancer. 2019;18:26.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Martelli AM, Evangelisti C, Follo MY, Ramazzotti G, Fini M, Giardino R, et al. Targeting the phosphatidylinositol 3-kinase/Akt/mammalian target of rapamycin signaling network in cancer stem cells. Curr Med Chem. 2011;18:2715–26.

    Article  CAS  PubMed  Google Scholar 

  44. Martins-Neves SR, Cleton-Jansen AM, Gomes CMF. Therapy-induced enrichment of cancer stem-like cells in solid human tumors: Where do we stand? Pharmacol Res. 2018;137:193–204.

    Article  CAS  PubMed  Google Scholar 

  45. Dong H, Liu H, Zhou W, Zhang F, Li C, Chen J, et al. GLI1 activation by non-classical pathway integrin alphavbeta3/ERK1/2 maintains stem cell-like phenotype of multicellular aggregates in gastric cancer peritoneal metastasis. Cell Death Dis. 2019;10:574.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Khurana SS, Riehl TE, Moore BD, Fassan M, Rugge M, Romero-Gallo J, et al. The hyaluronic acid receptor CD44 coordinates normal and metaplastic gastric epithelial progenitor cell proliferation. J Biol Chem. 2013;288:16085–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Salaroglio IC, Mungo E, Gazzano E, Kopecka J, Riganti C. ERK is a pivotal player of chemo-immune-resistance in cancer. Int J Mol Sci. 2019;20.

  48. Zhou L, Li X, Zhou F, Jin Z, Chen D, Wang P, et al. Downregulation of leucine-rich repeats and immunoglobulin-like domains 1 by microRNA-20a modulates gastric cancer multidrug resistance. Cancer Sci. 2018;109:1044–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Huang W, Wan C, Luo Q, Huang Z, Luo Q. Genistein-inhibited cancer stem cell-like properties and reduced chemoresistance of gastric cancer. Int J Mol Sci. 2014;15:3432–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Zhao YY, Yu L, Liu BL, He XJ, Zhang BY. Downregulation of P-gp, Ras and p-ERK1/2 contributes to the arsenic trioxide-induced reduction in drug resistance towards doxorubicin in gastric cancer cell lines. Mol Med Rep. 2015;12:7335–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Liu SQ, Yu JP, Yu HG, Lv P, Chen HL. Activation of Akt and ERK signalling pathways induced by etoposide confer chemoresistance in gastric cancer cells. Digestive Liver Dis. 2006;38:310–8.

    Article  CAS  Google Scholar 

  52. Wu G, Qin XQ, Guo JJ, Li TY, Chen JH. AKT/ERK activation is associated with gastric cancer cell resistance to paclitaxel. Int J Clin Exp Pathol. 2014;7:1449–58.

    PubMed  PubMed Central  Google Scholar 

  53. Ji R, Zhang B, Zhang X, Xue J, Yuan X, Yan Y, et al. Exosomes derived from human mesenchymal stem cells confer drug resistance in gastric cancer. Cell Cycle. 2015;14:2473–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Zhang JX, Xu Y, Gao Y, Chen C, Zheng ZS, Yun M, et al. Decreased expression of miR-939 contributes to chemoresistance and metastasis of gastric cancer via dysregulation of SLC34A2 and Raf/MEK/ERK pathway. Mol Cancer. 2017;16:18.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Flaherty KT, Robert C, Hersey P, Nathan P, Garbe C, Milhem M, et al. Improved survival with MEK inhibition in BRAF-mutated melanoma. N. Engl J Med. 2012;367:107–14.

    Article  CAS  PubMed  Google Scholar 

  56. Farley J, Brady WE, Vathipadiekal V, Lankes HA, Coleman R, Morgan MA, et al. Selumetinib in women with recurrent low-grade serous carcinoma of the ovary or peritoneum: an open-label, single-arm, phase 2 study. Lancet Oncol. 2013;14:134–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Banerjee A, Jakacki RI, Onar-Thomas A, Wu S, Nicolaides T, Young Poussaint T, et al. A phase I trial of the MEK inhibitor selumetinib (AZD6244) in pediatric patients with recurrent or refractory low-grade glioma: a Pediatric Brain Tumor Consortium (PBTC) study. Neuro-Oncol. 2017;19:1135–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Wagner AD, Syn NL, Moehler M, Grothe W, Yong WP, Tai BC, et al. Chemotherapy for advanced gastric cancer. Cochrane Database Syst Rev. 2017;8:CD004064.

    PubMed  Google Scholar 

  59. Lu J, Xu BB, Zheng ZF, Xie JW, Wang JB, Lin JX, et al. CRP/prealbumin, a novel inflammatory index for predicting recurrence after radical resection in gastric cancer patients: post hoc analysis of a randomized phase III trial. Gastric Cancer. 2019;22:536–45.

    Article  CAS  PubMed  Google Scholar 

  60. UKCCCR guidelines for the use of cell lines in cancer research. Br J Cancer. 2000;82:1495–509.

  61. Cho SJ, Yoon C, Lee JH, Chang KK, Lin JX, Kim YH, et al. KMT2C mutations in diffuse-type gastric adenocarcinoma promote epithelial-to-mesenchymal transition. Clin Cancer Res. 2018;24:6556–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Bisson I, Prowse DM. WNT signaling regulates self-renewal and differentiation of prostate cancer cells with stem cell characteristics. Cell Res. 2009;19:683–97.

    Article  CAS  PubMed  Google Scholar 

  63. Yoon SS, Eto H, Lin CM, Nakamura H, Pawlik TM, Song SU, et al. Mouse endostatin inhibits the formation of lung and liver metastases. Cancer Res. 1999;59:6251–6.

    CAS  PubMed  Google Scholar 

  64. Cho SJ, Kook MC, Lee JH, Shin JY, Park J, Bae YK, et al. Peroxisome proliferator-activated receptor gamma upregulates galectin-9 and predicts prognosis in intestinal-type gastric cancer. Int J Cancer. 2015;136:810–20.

    Article  CAS  PubMed  Google Scholar 

  65. Yoon C, Till J, Cho SJ, Chang KK, Lin JX, Huang CM, et al. KRAS activation in gastric adenocarcinoma stimulates epithelial-to-mesenchymal transition to cancer stem-like cells and promotes metastasis. Mol cancer Res. 2019;17:1945–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This research was supported by NIH/NCI through 1R01 CA158301-01 (SSY), Cancer Center Support Grant P30 CA008748 (MSKCC), and Natural Science Foundation of Fujian Province (2019J01155). Authors thank Jessica Moore, MS, senior editor and grant writer at MSK, for help in editing and revising the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Changhwan Yoon or Jun Ho Lee.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article has been retracted. Please see the retraction notice for more detail: https://doi.org/10.1038/s41388-024-02962-0"

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, J., Bang, H., Kim, S.M. et al. RETRACTED ARTICLE: Lymphatic metastasis-related TBL1XR1 enhances stemness and metastasis in gastric cancer stem-like cells by activating ERK1/2-SOX2 signaling. Oncogene 40, 922–936 (2021). https://doi.org/10.1038/s41388-020-01571-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-020-01571-x

This article is cited by

Search

Quick links