Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Selective inhibition of stemness through EGFR/FOXA2/SOX9 axis reduces pancreatic cancer metastasis

Abstract

Pancreatic cancer (PC) is difficult to defeat due to mechanism (s) driving metastasis and drug resistance. Cancer stemness is a major challenging phenomenon associated with PC metastasis and limiting therapy efficacy. In this study, we evaluated the pre-clinical and clinical significance of eradicating pancreatic cancer stem cells (PCSC) and its components using a pan-EGFR inhibitor afatinib in combination with gemcitabine. Afatinib in combination with gemcitabine significantly reduced KrasG12D/+; Pdx-1 Cre (KC) (P < 0.01) and KrasG12D/+; p53R172H/+; Pdx-1 Cre (KPC) (P < 0.05) derived mouse tumoroids and KPC-derived murine syngeneic cell line growth compared to gemcitabine/afatinib alone treatment. The drug combination also reduced PC xenograft tumor burden (P < 0.05) and the incidence of metastasis by affecting key stemness markers, as confirmed by co-localization studies. Moreover, the drug combination significantly decreases the growth of various PC patient-derived organoids (P < 0.001). We found that SOX9 is significantly overexpressed in high-grade PC tumors (P < 0.05) and in chemotherapy-treated patients compared to chemo-naïve patients (P < 0.05). These results were further validated using publicly available datasets. Moreover, afatinib alone or in combination with gemcitabine decreased stemness and tumorspheres by reducing phosphorylation of EGFR family proteins, ERK, FAK, and CSC markers. Mechanistically, afatinib treatment decreased CSC markers by downregulating SOX9 via FOXA2. Indeed, EGFR and FOXA2 depletion reduced SOX9 expression in PCSCs. Taken together, pan-EGFR inhibition by afatinib impedes PCSCs growth and metastasis via the EGFR/ERK/FOXA2/SOX9 axis. This novel mechanism of pan-EGFR inhibitor and its ability to eradicate CSC may serve as a tailor-made approach to enhance chemotherapeutic benefits in other cancer types.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Effects of afatinib and gemcitabine on mouse pancreatic tumoroids and xenograft models.
Fig. 2: Afatinib and gemcitabine combination treatment inhibited human pancreatic cancer patients-derived tumoroids.
Fig. 3: Afatinib inhibited human and mouse pancreatic cancer stem cells and stemness.
Fig. 4: Cancer stem cell-associated self-renewal markers SOX9, CD44, EpCAM, and CD133 expression in normal pancreas, grade 2 and grade 3 PDAC, chemo-treated and untreated pancreatic cancer tissues.
Fig. 5: Afatinib inhibited CSC stemness by downregulating multiple CSC markers in vitro and in vivo xenograft PC models.
Fig. 6: Afatinib decreased the CSC population via EGFR/ERK/FOXA2/SOX9 signaling in PCSCs.

Similar content being viewed by others

References

  1. Garrido-Laguna I, Hidalgo M. Pancreatic cancer: from state-of-the-art treatments to promising novel therapies. Nat Rev Clin Oncol. 2015;12:319–34.

    CAS  PubMed  Google Scholar 

  2. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2020. CA Cancer J Clin. 2020;70:7–30.

    PubMed  Google Scholar 

  3. Rhim AD, Mirek ET, Aiello NM, Maitra A, Bailey JM, McAllister F, et al. EMT and dissemination precede pancreatic tumor formation. Cell 2012;148:349–61.

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Clevers H. The cancer stem cell: premises, promises and challenges. Nat Med. 2011;17:313–9.

    CAS  PubMed  Google Scholar 

  5. Dalerba P, Clarke MF. Cancer stem cells and tumor metastasis: first steps into uncharted territory. Cell Stem Cell. 2007;1:241–2.

    CAS  PubMed  Google Scholar 

  6. Hermann PC, Huber SL, Herrler T, Aicher A, Ellwart JW, Guba M, et al. Distinct populations of cancer stem cells determine tumor growth and metastatic activity in human pancreatic cancer. Cell Stem Cell. 2007;1:313–23.

    CAS  PubMed  Google Scholar 

  7. Tanase CP, Neagu AI, Necula LG, Mambet C, Enciu AM, Calenic B, et al. Cancer stem cells: involvement in pancreatic cancer pathogenesis and perspectives on cancer therapeutics. World J Gastroenterol. 2014;20:10790–801.

    PubMed  PubMed Central  Google Scholar 

  8. Ardito CM, Gruner BM, Takeuchi KK, Lubeseder-Martellato C, Teichmann N, Mazur PK, et al. EGF receptor is required for KRAS-induced pancreatic tumorigenesis. Cancer Cell. 2012;22:304–17.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Ioannou N, Dalgleish AG, Seddon AM, Mackintosh D, Guertler U, Solca F, et al. Anti-tumour activity of afatinib, an irreversible ErbB family blocker, in human pancreatic tumour cells. Br J Cancer. 2011;105:1554–62.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Sergina NV, Rausch M, Wang D, Blair J, Hann B, Shokat KM, et al. Escape from HER-family tyrosine kinase inhibitor therapy by the kinase-inactive HER3. Nature. 2007;445:437–41.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Engle JA, Kolesar JM. Afatinib: a first-line treatment for selected patients with metastatic non-small-cell lung cancer. Am J Health Syst Pharm. 2014;71:1933–8.

    CAS  PubMed  Google Scholar 

  12. Modjtahedi H, Cho BC, Michel MC, Solca F. A comprehensive review of the preclinical efficacy profile of the ErbB family blocker afatinib in cancer. Naunyn Schmiedebergs Arch Pharm. 2014;387:505–21.

    CAS  Google Scholar 

  13. Li Y, Kong D, Ahmad A, Bao B, Sarkar FH. Pancreatic cancer stem cells: emerging target for designing novel therapy. Cancer Lett. 2013;338:94–100.

    CAS  PubMed  Google Scholar 

  14. Clark PA, Iida M, Treisman DM, Kalluri H, Ezhilan S, Zorniak M, et al. Activation of multiple ERBB family receptors mediates glioblastoma cancer stem-like cell resistance to EGFR-targeted inhibition. Neoplasia 2012;14:420–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Seshacharyulu P, Ponnusamy MP, Rachagani S, Lakshmanan I, Haridas D, Yan Y, et al. Targeting EGF-receptor(s) - STAT1 axis attenuates tumor growth and metastasis through downregulation of MUC4 mucin in human pancreatic cancer. Oncotarget. 2015;6:5164–81.

    PubMed  Google Scholar 

  16. Sarkar FH, Li Y, Wang Z, Kong D. Pancreatic cancer stem cells and EMT in drug resistance and metastasis. Minerva Chir. 2009;64:489–500.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Karmakar S, Seshacharyulu P, Lakshmanan I, Vaz AP, Chugh S, Sheinin YM, et al. hPaf1/PD2 interacts with OCT3/4 to promote self-renewal of ovarian cancer stem cells. Oncotarget 2017;8:14806–20.

    PubMed  PubMed Central  Google Scholar 

  18. Vaz AP, Ponnusamy MP, Rachagani S, Dey P, Ganti AK, Batra SK. Novel role of pancreatic differentiation 2 in facilitating self-renewal and drug resistance of pancreatic cancer stem cells. Br J Cancer. 2014;111:486–96.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Seymour PA. Sox9: a master regulator of the pancreatic program. Rev Diabet Stud. 2014;11:51–83.

    PubMed  PubMed Central  Google Scholar 

  20. Shroff S, Rashid A, Wang H, Katz MH, Abbruzzese JL, Fleming JB, et al. SOX9: a useful marker for pancreatic ductal lineage of pancreatic neoplasms. Hum Pathol. 2014;45:456–63.

    CAS  PubMed  Google Scholar 

  21. Chen K, Li Z, Jiang P, Zhang X, Zhang Y, Jiang Y, et al. Co-expression of CD133, CD44v6 and human tissue factor is associated with metastasis and poor prognosis in pancreatic carcinoma. Oncol Rep. 2014;32:755–63.

    PubMed  Google Scholar 

  22. Ding Q, Miyazaki Y, Tsukasa K, Matsubara S, Yoshimitsu M, Takao S. CD133 facilitates epithelial-mesenchymal transition through interaction with the ERK pathway in pancreatic cancer metastasis. Mol Cancer. 2014;13:15.

    PubMed  PubMed Central  Google Scholar 

  23. Zhou G, Chiu D, Qin D, Niu L, Cai J, He L, et al. Detection and clinical significance of CD44v6 and integrin-beta1 in pancreatic cancer patients using a triplex real-time RT-PCR assay. Appl Biochem Biotechnol. 2012;167:2257–68.

    CAS  PubMed  Google Scholar 

  24. Nomura A, Banerjee S, Chugh R, Dudeja V, Yamamoto M, Vickers SM, et al. CD133 initiates tumors, induces epithelial-mesenchymal transition and increases metastasis in pancreatic cancer. Oncotarget. 2015;6:8313–22.

    PubMed  PubMed Central  Google Scholar 

  25. Fitzgerald TL, McCubrey JA. Pancreatic cancer stem cells: association with cell surface markers, prognosis, resistance, metastasis and treatment. Adv Biol Regul. 2014;56:45–50.

    CAS  PubMed  Google Scholar 

  26. Herreros-Villanueva M, Zhang JS, Koenig A, Abel EV, Smyrk TC, Bamlet WR, et al. SOX2 promotes dedifferentiation and imparts stem cell-like features to pancreatic cancer cells. Oncogenesis. 2013;2:e61.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Lynn FC, Smith SB, Wilson ME, Yang KY, Nekrep N, German MS. Sox9 coordinates a transcriptional network in pancreatic progenitor cells. Proc Natl Acad Sci USA. 2007;104:10500–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Roy SK, Srivastava RK, Shankar S. Inhibition of PI3K/AKT and MAPK/ERK pathways causes activation of FOXO transcription factor, leading to cell cycle arrest and apoptosis in pancreatic cancer. J Mol Signal. 2010;5:10.

    PubMed  PubMed Central  Google Scholar 

  29. Hennig R, Grippo P, Ding XZ, Rao SM, Buchler MW, Friess H, et al. 5-Lipoxygenase, a marker for early pancreatic intraepithelial neoplastic lesions. Cancer Res. 2005;65:6011–6.

    CAS  PubMed  Google Scholar 

  30. Han H, Von, Hoff DD. SnapShot: pancreatic cancer. Cancer Cell. 2013;23:424–24. e1

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Van den Broeck A, Gremeaux L, Topal B, Vankelecom H. Human pancreatic adenocarcinoma contains a side population resistant to gemcitabine. BMC Cancer. 2012;12:354.

    PubMed  Google Scholar 

  32. Macha MA, Rachagani S, Qazi AK, Jahan R, Gupta S, Patel A, et al. Afatinib radiosensitizes head and neck squamous cell carcinoma cells by targeting cancer stem cells. Oncotarget. 2017;8:20961–73.

    PubMed  PubMed Central  Google Scholar 

  33. Vengoji R, Macha MA, Nimmakayala RK, Rachagani S, Siddiqui JA, Mallya K, et al. Afatinib and Temozolomide combination inhibits tumorigenesis by targeting EGFRvIII-cMet signaling in glioblastoma cells. J Exp Clin Cancer Res. 2019;38:266.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Passaro A, Laktionov KK, Poltoratskiy A, Egorova I, Hochmair M, Migliorino MR, et al. Afatinib in EGFR TKI-naive patients (pts) with locally advanced/metastatic NSCLC harbouring EGFR mutations: An interim analysis of a phase IIIB trial. Ann Oncol. 2019;30(Suppl 2):ii48–ii49.

    Google Scholar 

  35. Furuya T, Shimada J, Okada S, Tsunezuka H, Kato D, Inoue M. Successful treatment with afatinib for pancreatic metastasis of lung adenocarcinoma: a case report. J Thorac Dis. 2017;9:E890–E93.

    PubMed  PubMed Central  Google Scholar 

  36. Fitzgerald TL, Lertpiriyapong K, Cocco L, Martelli AM, Libra M, Candido S, et al. Roles of EGFR and KRAS and their downstream signaling pathways in pancreatic cancer and pancreatic cancer stem cells. Adv Biol Regul. 2015;59:65–81.

    CAS  PubMed  Google Scholar 

  37. Tebbutt N, Pedersen MW, Johns TG. Targeting the ERBB family in cancer: couples therapy. Nat Rev Cancer. 2013;13:663–73.

    CAS  PubMed  Google Scholar 

  38. Ueda S, Ogata S, Tsuda H, Kawarabayashi N, Kimura M, Sugiura Y, et al. The correlation between cytoplasmic overexpression of epidermal growth factor receptor and tumor aggressiveness: poor prognosis in patients with pancreatic ductal adenocarcinoma. Pancreas. 2004;29:e1–8.

    PubMed  Google Scholar 

  39. Kelley RK, Ko AH. Erlotinib in the treatment of advanced pancreatic cancer. Biologics. 2008;2:83–95.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Hirsh V. Next-Generation Covalent Irreversible Kinase Inhibitors in NSCLC: focus on Afatinib. BioDrugs. 2015;29:167–83.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Abhold EL, Kiang A, Rahimy E, Kuo SZ, Wang-Rodriguez J, Lopez JP, et al. EGFR kinase promotes acquisition of stem cell-like properties: a potential therapeutic target in head and neck squamous cell carcinoma stem cells. PLoS ONE. 2012;7:e32459.

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Steelman LS, Fitzgerald T, Lertpiriyapong K, Cocco L, Follo MY, Martelli AM, et al. Critical Roles of EGFR Family Members in Breast Cancer and Breast Cancer Stem Cells: Targets for Therapy. Curr Pharm Des. 2016;22:2358–88.

    CAS  PubMed  Google Scholar 

  43. Boj SF, Hwang CI, Baker LA, Chio II, Engle DD, Corbo V, et al. Organoid models of human and mouse ductal pancreatic cancer. Cell. 2015;160:324–38.

    CAS  PubMed  Google Scholar 

  44. Jiang H, Wu L, Chen J, Mishra M, Chawsheen HA, Zhu H, et al. Sulfiredoxin Promotes Colorectal Cancer Cell Invasion and Metastasis through a Novel Mechanism of Enhancing EGFR Signaling. Mol Cancer Res. 2015;13:1554–66.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Mukhopadhyay P, Lakshmanan I, Ponnusamy MP, Chakraborty S, Jain M, Pai P, et al. MUC4 overexpression augments cell migration and metastasis through EGFR family proteins in triple negative breast cancer cells. PLoS ONE. 2013;8:e54455.

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Yang Y, Zhao W, Xu QW, Wang XS, Zhang Y, Zhang J. IQGAP3 promotes EGFR-ERK signaling and the growth and metastasis of lung cancer cells. PLoS ONE. 2014;9:e97578.

    PubMed  PubMed Central  Google Scholar 

  47. Zhou X, Hu Y, Dai L, Wang Y, Zhou J, Wang W, et al. MicroRNA-7 inhibits tumor metastasis and reverses epithelial-mesenchymal transition through AKT/ERK1/2 inactivation by targeting EGFR in epithelial ovarian cancer. PLoS ONE. 2014;9:e96718.

    PubMed  PubMed Central  Google Scholar 

  48. Lavon N, Yanuka O, Benvenisty N. The effect of overexpression of Pdx1 and Foxa2 on the differentiation of human embryonic stem cells into pancreatic cells. Stem Cells. 2006;24:1923–30.

    CAS  PubMed  Google Scholar 

  49. Ling S, Chang X, Schultz L, Lee TK, Chaux A, Marchionni L, et al. An EGFR-ERK-SOX9 signaling cascade links urothelial development and regeneration to cancer. Cancer Res. 2011;71:3812–21.

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Sato T, Stange DE, Ferrante M, Vries RG, Van Es JH, Van den Brink S, et al. Long-term expansion of epithelial organoids from human colon, adenoma, adenocarcinoma, and Barrett’s epithelium. Gastroenterology. 2011;141:1762–72.

    CAS  PubMed  Google Scholar 

  51. Torres MP, Rachagani S, Souchek JJ, Mallya K, Johansson SL, Batra SK. Novel pancreatic cancer cell lines derived from genetically engineered mouse models of spontaneous pancreatic adenocarcinoma: applications in diagnosis and therapy. PLoS ONE. 2013;8:e80580.

    PubMed  PubMed Central  Google Scholar 

  52. Nimmakayala RK, Seshacharyulu P, Lakshmanan I, Rachagani S, Chugh S, Karmakar S, et al. Cigarette Smoke Induces Stem Cell Features of Pancreatic Cancer Cells via PAF1. Gastroenterology. 2018;155:892–908. e6

    CAS  PubMed  Google Scholar 

  53. Majhi PD, Lakshmanan I, Ponnusamy MP, Jain M, Das S, Kaur S, et al. Pathobiological implications of MUC4 in non-small-cell lung cancer. J Thorac Oncol. 2013;8:398–407.

    CAS  PubMed  Google Scholar 

Download references

Funding

This research paper is supported, in parts, by grants from the National Institutes of Health (This work was supported, in parts, by the National Institutes of Health (P01 CA217798, R01 CA183459, R01 CA195586, R01 CA206444, R01 CA210637, R01 CA228524, R01 CA247471, U01 CA200466, and U01 CA210240).

Author information

Authors and Affiliations

Authors

Contributions

SKB, MPP, GK, and PS designed the experiments, and SKB and MPP offered directions. GK, PS, SR, PN, SR, RKN, RV, and KM performed the experiments and analyzed the results. RCV performed bioinformatic analysis and analyzed the Data. Pathological analysis conducted by SML. Statistical analysis was performed by LMS. GK and PS drafted the paper, and SKB, MPP, MJ, ABS, MPM, JMF, and QPL reviewed the paper and suggested significant changes to the drafts. All authors read and approved the final paper.

Corresponding authors

Correspondence to Moorthy P. Ponnusamy or Surinder K. Batra.

Ethics declarations

Conflict of interest

SKB is one of the co-founders of Sanguine Diagnostics and Therapeutics, Inc. The other authors disclosed no potential conflicts of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaushik, G., Seshacharyulu, P., Rauth, S. et al. Selective inhibition of stemness through EGFR/FOXA2/SOX9 axis reduces pancreatic cancer metastasis. Oncogene 40, 848–862 (2021). https://doi.org/10.1038/s41388-020-01564-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-020-01564-w

This article is cited by

Search

Quick links