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Abstract
Gastrointestinal cancer is one of the leading health problems worldwide, with a high morbidity and mortality. To date,
harnessing both the innate and adaptive immune system against cancer provides a selective and effective therapeutic strategy
for patients. As a first line defense against cancer, natural killer (NK) cells can swiftly target and lyse tumor cells without
prior activation. In addition to its pivotal role in innate immunity, NK cells also play unique roles in the adaptive immune
system as it enhance anti-tumor adaptive immune responses through secretion of cytokines and retaining an immunological
memory. All these characteristics make NK cell a promising anti-cancer agent for patients. In spite of scarce infiltration and
impaired function of NK cells in tumors, and the fact that tumors easily develop resistant mechanisms to evade the attacks
from endogenous NK cells, multiple strategies have been developed to boost anti-tumor effect of NK cells and abolish tumor
resistance. Some examples include adoptive transfer of NK cells after ex vivo activation and expansion; restoration of NK
cell function using immune checkpoint inhibitors, and monoclonal antibody or cytokine treatment. Preclinical data have
shown encouraging results, suggesting that NK cells hold great potential in cancer therapy. In this review, we discuss NK
cells’ cytotoxicity and modulation function in GI cancer and the current application in clinical therapy.

Introduction

Gastrointestinal (GI) cancer, referring to the malignant
condition arising in the digestive system, is one of the most
serious health problems worldwide. According to global
epidemiological data (2018), among all the cancer types,
colorectal cancer (CRC) is the fourth (6.1%) most common
diagnosed cancers and second leading cause (9.2%) of
cancer-related deaths, followed by gastric cancer (5.7%)
and liver cancer (4.7%) for incidence, and gastric cancer
(8.2%) and liver cancer (8.2%), esophagus cancer (5.3%)
for mortality [1]. Surgical resection remains the mainstay of
treatment for early-stage cancer. However most patients are

already at a late stage disease at initial diagnosis. Current
therapeutic strategies for late stage GI cancers include
radiotherapy, chemotherapy, and targeted therapy, but are
far from satisfactory with poor clinical response and high
risk of therapeutic toxicity. Therefore, there is an urgent
need to develop novel strategies to improve the therapeutic
efficiency and clinical prognosis of patients with GI cancer.

To date, immunotherapy has come into stage with the
great success of immune checkpoint inhibitors represented
by the anti-programmed cell death protein 1/ programmed
death-ligand 1 (anti-PD-1/PD-L1) and anti-cytotoxic T-
lymphocyte-associated protein 4 (anti-CTLA-4) in multiple
cancers. Low cytotoxicity, long-lasting tumor regression,
and recurrence prevention make this novel therapeutic
strategy a promising candidate for cancer treatment. How-
ever, translation of this success to GI cancer is not as
satisfactory as in melanoma and lung cancer. In the Phase 1
and 2 clinical trials of CRC and advanced pancreatic cancer,
few patients showed responses [2]. Only a limited number
of patients with special characteristics achieved benefits
compared with those undergoing traditional chemotherapy.
It is assumed that scarce T-cell infiltration, poor effector T-
cell responses, and adaptive resistance to ICIs are main
reasons for this failure. Nevertheless, it paves way for
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harnessing the immune system in cancer therapy. In addi-
tion to the cytotoxic T lymphocytes, many other immune
cell types in both the adaptive and innate immune systems
have gained interests in the cancer immunotherapy, among
which NK cell is one of the promising candidates [3].

Discovered in the 1970s, natural killer cell (NK cell)
received its name for the inherent ability to kill viruses and
tumor cells rapidly. NK cells play a predominant role in
cancer immunosurveillance [4–6]. Recently, multiple basic
research studies along with sing-cell RNA sequencing
technologies unveiled the similarities between NK cells and
cytotoxic CD8+ T cells ranging from phenotype to function
[7]. Aside from the natural cytotoxicity towards transformed
cells, NK cells can also secrete multiple cytokines and
chemokines, which can further modulate the immune
microenvironment. All these characters suggest that NK
cells hold great potential in cancer therapy. In this review,
we summarized NK cells’ functions and current clinical
applications in cancer, with a focus on the GI cancers.

Overview of NK cell

The NK cell first came into knowledge in 1970s when
researchers found that a type of large granular lymphocyte
isolated from mice spleen can lyse several tumor cell lines
rapidly (within one to four hours) [8]. Although NK cells
belong to the lymphocytes family due to their morphology,
they are also classified as part of the innate immunity, as
they recognize targets through an array of germline-encoded
receptors instead of antigen receptors generated by V(D)J
recombination and they do not express the CD3 subunits as
in T lymphocytes.

NK cells, typically identified as CD3-CD56+ cells in
human and CD3-NK1.1+ in several mouse strains, account
for about 5–15% lymphocytes in the circulation [9]. Aside
from peripheral blood, NK cells are also found in non-
lymphoid tissues such as liver, uterus, adipose tissue and
gut [10]. In humans, NK cells can be divided into two
subsets based on the CD56 expression level, the CD56dim

(~90%) and CD56bright (~10%), mirroring the functions of
cytotoxic and helper cells respectively [11].

NK cell activation—“missing self” and “induced
self”

Ten years after the discovery of NK cells, the “missing self”
hypothesis postulated by Kärre et al. [12] gave us a much
clearer knowledge of NK cell recognition. According to this
hypothesis, killer-cell immunoglobulin-like receptors (KIRs)
expressed on the NK cell surface can recognize major histo-
compatibility complex I (MHC I), which is widely expressed
on the surface of normal cells and exerts an inhibitory signal to

protect the healthy cells from NK cell attack. However, in cells
undergoing virus infection or malignant transformation, the
MHC-I expression is decreased or even lost, such that NK
cells can be relieved from KIR-induced inhibition and exert
their lysis function. Aside from the “missing self” mechanism,
the “induced self” is also proposed in the NK cell-mediated
immune surveillance. The activating receptors on NK cells
including the natural cytotoxicity receptors (NCRs) and natural
killer group 2D (NKG2D) can recognize the ligands on the
stressed cells and deliver the activating signal [13]. These two
mechanisms involve the inhibitory and activating receptors
respectively, the balance of which determines the NK cell
function status.

NK cell function – killer and helper

Once activated, NK cells exert lysis function in different
ways. Firstly, they can release lysis granules with perforin
and granzyme in it [14]. Then, the death receptors such as
Fas ligand (FasL) and tumor necrosis factor-related apop-
tosis-inducing ligand (TRAIL) are also contributors to NK
cell-mediated cytotoxicity [15]. Additionally, NK cells can
recognize and induce the lysis of antibody-coated targets
through CD16 (FcγRIIIa), which is highly expressed on the
CD56dim subset, a process referred to as antibody-dependent
cell cytotoxicity (ADCC) [16]. Aside from the direct cyto-
toxicity, NK cells can also modulate both innate and
adaptive immunity through secreting an array of cytokines,
growth factors, and chemokines [17]. For example, NK
cells are now regarded as the major producer of interferon-γ
(IFN-γ), which plays a critical role in shaping the T-cell
response, including the TH1 polarization and CD8+ T-cell
activation [18]. They can also secrete chemokines such as
CCL3 and CCL4 that can help recruit other immune cells to
the inflammation site to enhance the immune response.

Multifaced NK cell in GI cancer

The exact role of NK cell in GI cancer was initially deciphered
by retrospective analysis of clinical data and utilizations of
animal models. In an 11-year follow-up study based on the
general population (n= 3625), the infiltration and cytotoxicity
of NK cells were found to be closely correlated with cancer
risk, implying a functional role of NK cell in tumorigenesis
[19]. Then in CRC and HCC, by analyzing NK cells in tumor
tissues and peripheral blood, the decreased frequency of NK
cell was found to be associated with higher risk of cancer and
worse clinical outcome [20]. This is further supported by the
findings that depletion of NK cells by performing antibody-
mediated methods or using transgenic mice model (Nfil3-/-

mice) vastly exacerbated tumorigenesis in mouse models
developing malignant diseases [21]. Many mechanisms have
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been put forward for understanding the NK cell-mediated
tumor surveillance. According to the biological function of
NK cells, both the direct cytotoxicity and immune modulation
effect are involved in NK cell mediated anti-tumor effects in
GI cancers (Fig. 1).

NK cell function as innate effector in GI cancer

As NK cells can respond to the stimulation within hours
without pre-immunization, it is commonly regarded as the
first-line fighter against cancer. In this process, NK cells act
as effector cells. Both the reduced MHC-I and stress-
induced specific ligands expressed on the transformed cells
can be recognized by surface receptors, leading to the
activation of NK cells (Fig. 1). Currently, NK cell activation
through the major activating receptor NKG2D is the most
well-characterized mechanism in tumor surveillance. A
positive correlation of NKG2D expression level and clinical
survival is observed in gastric cancer, and in vitro experi-
ments confirmed the NK cell cytotoxicity towards gastric
cancer cell line [22]. Moreover, using human pancreatic
cancer cell lines and orthotopic pancreatic cancer models,
NK cells were found to be cytotoxic to cancer stem cells
(CSCs) through the NKG2D-dependent recognition of the
CSCs markers such as CD133 and CD24, highlighting the
promising role of NK cells in the control of tumor

recurrence and metastasis [23]. In addition, the death
receptors also contribute to NK cell-mediated anti-tumor
cytotoxicity. NK cells can induce significant apoptosis of
HCC cell line Hep3B through TRAIL/TRAIL receptor
(tumor necrosis factor-related apoptosis-inducing ligand)
interaction [24]. Same mechanism was also involved in the
NK cell-mediated suppression of liver metastasis in CRC
[25]. Similarly, in MC38 (murine primary colon carcinoma
cell line)-based liver metastasis of CRC mice model, Nlrp3
inflammasome can increase the IL-18 secretion and promote
the maturation of hepatic NK cells with increasing FasL
expression, the Fas/FasL interaction can exert cytotoxicity
towards tumor cells [26].

Interestingly, some anti-tumor chemotherapeutic agents
have been shown to exert tumor-suppressive effect through
NK cells. For example, the therapeutic monoclonal anti-
bodies such as Cetuximab (anti-epidermal growth factor
receptor/EGFR antibody), Herceptin/Trastuzumab (anti-
human epidermal growth factor receptor 2/HER2 antibody),
and Rituximab (anti-CD20 antibody) are demonstrated to
function in patients partly through NK cell-mediated ADCC
[27]. Cetuximab is now regarded as a standard choice for
metastatic CRC. By analyzing the immune cells of per-
ipheral blood mononuclear cell (PBMC) derived from CRC
patients, NK cells were found to be activated upon Cetux-
imab treatment [28]. Moreover, a higher basal NK cell

Fig. 1 The NK cell function mechanism in cancer. The NK cell can
function as the innate cytotoxic effector as well as a regulator mod-
ulating both the innate and adaptive immunity. a As the innate killer
cells, the stress-induced ligands (“induced self”) and decreased MHC I
expression (“missing self”) level can be recognized by the activating
and inhibitory receptors on NK cells respectively, the balance of which
determines the NK cell activation status. b After activation, NK cells

can induce the lysis of the target cells via secreting granules with
granzyme B and perforin, the death receptor/ligand interaction and
antibody-dependent cell cytotoxicity. c On the other hand, activated
NK cells can secrete an array of cytokine and chemokine that pro-
moting the DC maturation and recruitment, which can further mod-
ulate T-cell response including the cytotoxic CD8+ T-cell and Th cell
activation.
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cytotoxicity indicates better therapeutic response [29],
suggesting the possible involvement of NK cell in the
cetuximab mediated tumor suppression.

NK cell function as a helper in GI cancer

Accumulating evidence suggests that NK cells are more than
just innate immune cells [30]. Firstly, NK cells can shape the
adaptive immunity through secreting cytokines that act on
other immune cells such as dendritic cells (DCs) [31], neu-
trophils [32], T cells [33]. Secondly, emerging evidence has
shown that NK cells can acquire immunological memory, a
feature of adaptive immunity [4]. Finally, the similarities
between NK cell and CD8+ T-cell are identified by basic
research as well as single-cell RNA sequencing technologies.
Intriguingly, through analyzing the whole-genome microarray
data sets of the Immunological Genome Project, a NK-T-cell
complex was observed, indicating the close transcriptional
relationship between NK cell and T cell [7]. Now there is a
consensus that NK cell is a bridge linking innate and adaptive
immunity, in which cytokine production is the major con-
tributor. The modulation function also plays a vital role in NK
cell mediated tumor surveillance.

Dendritic cells (DC), a type of antigen presenting cell
(APC), is an important player in the NK cell-mediated
shaping of the adaptive immunity via NK-cytokine-DC
axis (Fig. 1). NK cell can promote DC recruitment and
maturation; reciprocally, DCs can also help prime NK
cells and enhance the cytotoxicity [34]. For example, NK
cells can recruit DCs into tumor microenvironment and
enhance the anti-tumor immune activity through secret-
ing CCL5 and XCL1 [31]. In addition, NK cells can also
promote the antigen cross presentation of DCs, which can
induce cytotoxic CD8+ T-cell response [35]. Similar
mechanism was shown in MHC Ilow cell line A20 and
CT26 that activated NK cell can recruit the DC to induce
protective CD8+ T-cell response [36]. The immu-
noadjuvant toll-like receptor 5 (TLR5), Entolimod, which
has already been used in clinical practice, can exert anti-
metastatic effects and keep immune memory in CT26
tumor cell induced CRC model through the NK-DC-CD8
+ T-cell axis [37]. Recently, scientists found that the NK-
DC axis is associated with anti-PD1 immunotherapy
responsiveness. For example, in melanoma it was found
that the frequency of NK cells is correlated with the
abundance of protective DCs, the ICI treatment response
as well as the overall survival, in which the NK cell
production of cytokine FLT3LG plays a pivotal role [38].

Impaired NK cells in GI cancer

Tumor evasion from immune response is regarded as a
hallmark of cancer. Extensive studies have found scarce

infiltration and impaired function of NK cells in GI cancer.
Disrupted balance of inhibitory and active receptors often
underlies NK cell dysfunction. The significantly reduced
expression of activating receptor NKG2D on NK cells
isolated from PBMC and tumor tissue is demonstrated in
patients with gastric cancer [39], CRC [40], and HCC [41].
Shedding of the major histocompatibility complex (MHC)
class I chain-related protein A and B (MICA/B), the ligands
of NKG2D that can be expressed on tumor cells, is one of
the most characterized mechanism responsible for the
impaired NKG2D recognition and subsequent tumor
immune evasion [41, 42]. Moreover, the inhibitory recep-
tors such as PD-1 were significantly increased in tumor
tissues derived from digestive cancer patients, including the
esophageal squamous-cell carcinomas (ESCC), HCC, CRC,
GC, and biliary cancer [43]. In addition to PD-1, many
other immune checkpoints have also been identified in NK
cells. The expression of T-cell immunoglobulin mucin-3
(Tim3), natural killer group 2 member A (NKG2A) and T-
cell immunoglobulin and ITIM domain (TIGIT) on NK
cells are increased in the tumor tissue and is correlated with
impaired NK cell cytotoxicity, advanced disease stage and
poor survival in CRC, GC and HCC patients [44, 45].
Recently, a novel inhibitory receptor CD96 is found to be
upregulated in intratumoral NK cells from HCC patients.
CD96+ NK cells are responsible for impaired IFN-γ pro-
duction and predict poor clinical outcomes [46]. NKG2A,
TIGIT, CD96 along with the PD-1 are now well acknowl-
edged immune checkpoints on NK cells, suggesting that
they are potent candidates for cancer immunotherapy.

Conversely, there are certain types of NK cells exerting
tumor-promoting effect in GI cancer. In CRC patients, the
tumor-associated NK cell (TANK) was found to make
contributes to the tumor angiogenesis and invasion through
secreting proangiogenic factors and tissue remodeling/
invasion factors secretion via STAT3 and STAT5 pathway
[47, 48].

The tumor microenvironment (TME) is the major con-
tributor for the impaired NK cell function in cancer. Firstly,
tumor cells, stromal cells, and other kinds of immune cells
in TME can influence NK cells’ function. Release of MICA
from tumor cells can significantly suppress the NKG2D
expression on NK cells in HCC patients [41]. Moreover,
tumor-associated fibroblast can also inactivate NK cell
through the Indoleamine 2,3-dioxygenase (IDO) and pros-
taglandin E-2 (PGE) secretion [49]. The immune-
suppressive cells such as regulatory T cells (Tregs),
myeloid-derived suppressor cells (MDSCs), and neutrophils
were also found associated with NK cell dysfunction via
direct cell contact [50–52]. Secondly, the physical factors
that provide cells with basic nutrition and environment are
also contributors for NK cell dysfunction. Take oxygen as
an example, intratumoral hypoxia is a very common
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phenomenon in cancer. Hypoxic tumor-derived micro-
vesicles (TD-MVs) can decrease the NKG2D expression of
NK cells via miR210 and miR23a [53]. Moreover, the
hypoxia-induced autophagy in tumor cells can help the
transformed cells escape the NK cell attack by degrading
the effector molecular granzyme B [54, 55]. The pH
alteration is another important factor. It has been found that
tumor-derived lactate can decrease the pH level and induce
apoptosis of NK cells, resulting in low infiltration of NK
cells in liver metastasis of CRC [56].

Taken together, NK cells play multiple roles in the tumor
microenvironment (Fig. 1). As the innate immune cell, it
can exert killer function towards the stressed or transformed
cells. On the other hand, it can be a helper modulating both
the innate and adaptive immunity through cytokine and
chemokine secretion. However, under the effect of specific
tumor microenvironment, the failure of NK cell infiltration
into tumor cells and impaired cytotoxicity are frequently
observed in cancer. From another perspective, the in-depth
investigation of NK cell dysfunction may also provide a
rational basis for development of new strategies to harness
NK cell in cancer immunotherapy.

Clinical application of NK cell in GI cancer

With advancement of knowledge on NK cell biology, the
role of NK cell in tumor immunosurveillance and its clinical
implications have been extensively investigated [3]. NK cell
could potentially serve as a prognostic factor for patients
with GI cancer. In addition, NK cell-based immunotherapy
has shown promising anti-tumor effects in a number of
studies.

NK cell-based cancer immunotherapy

In recent decades, immunotherapy has emerged as one of
the most promising tools for cancer treatment. Current
immunotherapy mainly focuses on cytotoxic T lympho-
cytes, including the CAT-T therapy and immune checkpoint
inhibitors. For GI cancer, several immunotherapeutic stra-
tegies have been developed including adoptive transfer of
immune cells, peptide-based vaccines, and immune check-
point inhibitors. NK cell is endowed with a strong and
specific anti-tumor potential and an immunoregulatory role
of other immune cells. Harnessing NK cells could be the
next frontier of GI cancer immunotherapy considering that
1) NK cells can effectively target different types of trans-
formed cells without pre-immunization, 2) high levels of
NK cells can be obtained and activated from a variety of
sources, and 3) the risk of side effects such as cytokine
releasing syndromes associated with T-cell-based immu-
notherapies could be low.

Adoptive NK cell transfer

Since NK cells are frequently insufficient or dysfunctional
in cancer patients, adoptive transfer of NK cells with anti-
tumor function is an appealing aspect for cancer immu-
notherapy. In the initial attempt, adoptive NK cell transfer
was employed to treat hematological malignancies (Fig. 2).
The results demonstrated that NK cells can be harnessed
and expanded in vitro and keep the cytotoxicity after the
transfer. As to GI cancer, different sources of NK cells have
been tried [57] (Table 1). For autologous or allogenic NK
cells, expansion and activation strategies are the key points.
In a phase I clinical trial (UMIN UMIN000007527),
Sakamoto et al. successfully expanded NK cells to almost
4,720-fold, by stimulating peripheral blood mononuclear
cell (PBMC) from GI cancer patient with OK432, IL-2 and
modified FN-CH296-induced T cells. The clinical safety for
transfer of expanded NK cells was further verified as no
unexpected NK cell infusion-related toxicity was observed
[58]. Aside from the PBMC, umbilical cord blood (UCB),
human embryonic stem cells (hESCs) and induced plur-
ipotent stem cells (iPSCs) are also precious sources to
obtain NK cells with high expansion efficiency and anti-
tumor function [59–61]. Xu et al. expanded NK cells from
UCB by using membrane-bound interleukin-21 (IL-21).
These NK cells can efficiently lyse CRC cell lines and
secreted cytokines and chemokines such as interferon-γ
(IFN-γ), tumor necrosis factor-α (TNF-α) and granulocyte-
macrophage colony-stimulating factor (GM-CSF) [62].
FT500, the off-the-shelf NK cell derived from iPSC, can
efficiently produce multiple cytokines and chemokines that
help recruit and activate T cells. Combining FT500 and
immune checkpoint inhibitors are presumed to combat drug
resistance for cancer patients [63]. More importantly, the
safety and efficiency of allogenic NK cells isolated from
healthy donors have been confirmed in hematological
malignancies and solid tumors [64]. Utilization of NK cell
lines such as NK-92 is another choice. The advantage is that
the cells are homogenous and can be easily handled and
expanded. Also their cytotoxicity against tumors has been
verified by in vitro and in vivo experiments [65]. Never-
theless, there is little information available about the clinical
efficiency of this method. In a phase I clinical trial recruiting
colon and lung cancer patients, the Hsp70-activated auto-
logous NK cells were employed. Although enhanced NK
cytotoxicity was achieved in these patients without any
negative side effects, no significant clinical response was
observed, which is likely due to high tumor burden and
limited sample size [66]. Thus, several modified strategies
have been developed for better therapeutic efficiency.

Inspired by the chimeric antigen receptor- T-cell (CAR-
T) therapy, it is feasible to develop CAR-modified NK cells
for immunotherapy (Fig. 2). Li et al. infused the CARs on
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the iPSC-derived NK cells to generate NK-CAR iPSC-NK
cells which exerted enhanced expansion efficiency and
cytotoxicity compared with the iPSC-NK and PB-NK
(PBMC-derived NK cell) [67]. In a clinical trial with
CRC patients, NKG2D-CAR-NK cells were constructed by
transducing the NK cells with NKG2D-CAR. Varying
degrees of clinical remission were observed in patients
treated with NKG2D-CAR-NK, indicating that CAR-NK is
promising for cancer therapy [68]. Moreover, the NK-92
cell line modified with bispecific chimeric PD1-DAP10/
NKG2D shown enhanced cytotoxicity in vitro and tumor
control in vivo [69]. Another human NK cell line YT is
modified with chimeric immunoglobulin T-cell receptor
specially recognizing human carcinoembryonic antigen
(CEA), which is frequently overexpressed in GI cancers
such as colorectal, gastric, and pancreatic carcinomas. Both
in vitro and in vivo experiment confirmed the improved
cytotoxicity of the modified NK cells [70]. To date, there
are three Phase 1/2 clinical trials ongoing using CAR-NK to
treat GI cancer (Table 1: NCT02839954; NCT03941457;
NCT03940820). Compared with the CAR-T therapy, recent
investigation found that CAR-NK does not cause serious
GVHD (graft-versus-host disease) and CRS (cytokine
release syndrome) [71], as NK cells have initial cytotoxicity
to transformed cells without pre-immunization. This pro-
vides solid grounds for further research into the CAR-NK in
cancer therapy.

Reverse the NK cell dysfunction

Adequate immune cell infiltration and normal function are
the two prerequisites for the successful immune surveil-
lance. The adoptive transfer only mobilizes the immune
cells in the fight against tumor. However, cancer cells have
developed multiple mechanisms to escape from the immune
surveillance and attack. The function of NK cells is fre-
quently impaired in cancers. Therefore, reversing the NK
cell dysfunction is another strategy in NK cell-based cancer
immunotherapy. Until now, multiple drugs have been
developed to reverse the impaired NK cell function,
including the immune checkpoint inhibitors, monoclonal
antibodies, cytokines and the specifically designed linkers
(Fig. 2).

Immune checkpoint inhibitors The immune checkpoints
are molecules acting as a brake on immune cells and bal-
ancing host immune system. Unfortunately, cancer cells can
take advantage of checkpoints such as CTLA-4, PD-1,
TIGIT and indoleamine 2, 3-dioxygenase 1 (IDO1) to evade
the immune response. The advent of immune checkpoint
inhibitors (ICIs), which substantially enhances host anti-
tumor immunity, represents a major hallmark in cancer
immunotherapy. Multiple investigations have uncovered the
inhibitory checkpoint inhibitors expressed on NK cells in
tumor microenvironment, including the famous PD-1,

Fig. 2 Current strategies to
harness NK cell in cancer
immunotherapy. The
application of NK cell in cancer
therapy mainly comes from two
directions. a One is the adoptive
transfer to increase the
infiltration of NK cells in the
tumor site. For this part, NK
cells from different origins can
be used, such as autologous,
allogenous, the cell line and the
genetic modified form (CAR-
NK). Preclinical data has already
shown encouraging results. b
The other is to restore NK cell
function. Immune checkpoint
inhibitors, monoclonal
antibodies and certain cytokines
have been tried to recover or
enhance the NK cell
cytotoxicity. Besides, the
specially designed linker that
recognizes the receptors on NK
cell and tumor cell at the same
time can enhance the formation
of NK-tumor synapse, which
can increase the recognition of
transformed cells by NK cells.
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CTLA-4 as well as newly identified NKG2A, TIGIT
[44, 72], which are now appreciated as promising targets for
NK cells-based immunotherapy. Moreover, shifting the
balance between activating and inhibitory receptors of NK
cells can further enhance the activity of NK cells, prompting
scientists to embark on multiple clinical efforts to assess the
safety and feasibility of NK cell-based ICIs. The initial
attempt was carried out in hematological malignancies. The
results demonstrated that blocking of inhibitory receptors
can enhance NK cells’ cytotoxicity towards the tumor cells.
In animal models, NK cells were found to make contribu-
tions to the disease remission in response to anti-PD-1/PD-
L1 treatment [73]. Also, the antibody Monalizumab that
was developed to target inhibitory receptor NKG2A
exhibited encouraging anti-tumor effects [74].

Monoclonal antibody Monoclonal antibody targeting
specific pathways or protein is one direction for cancer
therapy. Many FDA-approved monoclonal antibodies, e.g.,
Cetuximab, have been found to partially depend on NK
cells [75], indicating a new direction to reverse NK cell
dysfunction and block tumor-mediated immunosuppression.
GA201, the modified glyco-engineered anti-EGFR mAb,
has shown enhanced tumor-suppressive effect through NK
cell-mediated ADCC in CRC patients. The therapeutic
efficiency was observed in several patients, especially those
with poor response to traditional Cetuximab [76]. The
CEACAM5, which is frequently overexpressed in gastro-
intestinal cancer such as colorectal, gastric, and pancreatic
cancer, is closely related to impaired NK cell function
through interaction with CEACAM1 [77]. Preclinical and
Phase I clinical trials have been conducted to evaluate the
safety and efficacy of anti-CEACAM5 antibody in CRC
[78].

Cytokines A large number of cytokines are involved in
shaping tumor microenvironment and regulating immune
response against tumor. In preclinical studies, the MHC-I
deficient tumors responded better to treatment of cytokine
such as IL-12 and IL-18, raising the question of whether the
efficiency of cytokine therapy relies on NK cells, con-
sidering the well-known role of NK cells in targeting MHC-
I deficient tumor [79]. A series of studies demonstrated that
the cytokine treatment can markedly enhance the function
of NK cells both in vitro and in vivo. For example, ex vivo
treatment with IL-2 can restore the Herceptin-mediated
ADCC function of NK cells derived from gastric cancer
patients [80]. In addition, IL-15 can partly promote the
maturation and function of NK cells. IL-15 administration
in CRC patients was found to activate the function of
infiltrating NK cells in liver metastases [81]. In keeping
with this, enhanced NK cell proliferation and cytokine
production was observed in patients [82]. In multiple

clinical trials, ALT-803, an IL-15 superagonist complex,
exhibited a more specific and strong effect in promoting the
proliferation and cytotoxicity of NK cells [83]. The
cytokine-based treatment is often combined with other types
of therapy. For example, ALT-803 plus traditional che-
motherapy is now tested in a clinical trial recruiting a small
number of patients with advanced pancreatic cancer [84].

BiKE and TriKE From the antibody-dependent cell-medi-
ated cytotoxicity (ADCC) of NK cell function mechanism,
specially designed bi- and tri-specific killer engagers
(BiKEs and TriKEs), the small molecules linking a single-
chain Fv against CD16 that is expressed on the NK cell with
one (BiKE) or two (TriKE) tumor-associated antigens, were
developed to improve the formation of immunological
synapses between NK cells and tumor cells. For example,
tumor-associated antigen CD133 and EpCAM have been
used to generate BiKEs. The CD133/CD16 BiKE can boost
the cytotoxicity of NK cells against CD133+ CRC stem
cells [85]. Similarly, EpCAM/CD16 BiKE increases the
synapse formation between NK cells and human cancer
cells including colon, neck and breast cancers [86]. In line
with these findings, ULBP2-aCEA BiKE promotes the
recognition and lysis of CEA+ tumor cells by the NK cells
through NKG2D-ULBP2 interaction, and the efficiency
against colon cancer was verified using animal models [87].
Moreover, optimized TriKE shown stronger NK cell
mediated cytotoxicity by targeting two activating receptors
on NK cells, NKp46 and CD16, and a tumor antigen on
cancer cells [88, 89]. This multi-targets antibody exhibits
sufficient activity and safety in animal experiments.
Although most of the bispecific engagers are now at the
preclinical stage, their ability to enhance NK cell-mediated
cytotoxicity against targets hold substantial promise for
treating cancer patients. Further investigations evaluating
the safety and efficiency of BiKE and TriKE are warranted
before clinical use.

Combination therapy to enhance the NK cell cytotoxicity

There is increasing consensus that using combination ther-
apy can achieve better clinical response with less side
effects. Inspired by the combination of anti-PD-1 and anti-
CTLA4 in lung cancer, the combination of different
checkpoint inhibitors (anti-PD-1, anti-NKG2A and anti-
TIGIT) was investigated and synergistic anti-tumor effect
was observed in preclinical experiments [72]. For example,
the metastatic microsatellite stable (MSS) CRC patients are
not good responders to the anti-PD-1 immunotherapy such
as Pembrolizumab, but in the phase 1 clinical trial
(NCT02671435) combining the Monalizumab (anti-
NKG2A antibody) and Durvalumab (anti-PD-L1 antibody),
three out of 39 patients were evaluated as partial response
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(PR) and 19 patients as stable disease (SD). No fatal adverse
event (AEs) or AEs induced drop out were reported.
Combining the NK cell-based immune-therapy with current
ICIS maybe one direction to improve the clinical response.

Different combination strategies have been tried to
achieve a much stronger clinical response. For example,
combing the adoptive NK cell transfer and monoclonal
antibody therapy is one common combination form.
Cetuximab is commonly used in CRC patients, enhanced
anti-tumor activity and improved clinical outcome was
observed in CRC patients when combined with NK cell
adoptive transfer [90]. In phase 1 clinical trial, four out of
nine patients with advanced colon cancer achieved clinical
benefit. Selected immune parameters were monitored during
the therapy and anti-tumor immune responses were
improved as exemplified by increased IFN‐γ production and
reduced number of peripheral regulatory T cells (Tregs)
[91]. Similarly, markedly increased anti-tumor effects were
observed when the monoclonal antibody Regorafenib was
combined with CAR-NK-92 cells in colon cancer mouse
models [92]. An additional study was carried out to evaluate
the efficacy of traditional chemotherapy combined with NK
cells-based immunotherapy in patients with locally
advanced colon carcinoma. Both the 5-year progression-
free survival (PFS) and overall survival (OS) rates increased
significantly (51.1% versus 35%, P= 0.044; 72.5% versus
51.6%, P= 0.037, respectively) in combination group
without any unacceptable side effects [93]. To date, many
clinical trials for combination therapy in GI cancer are
ongoing (Table 1).

Preclinical experiments have achieved encouraging
results, highlighting the potential of combination therapy in
cancer immunotherapy. However, the in vitro and animal
experiments often fail to mimic the complex nature of
human immunity, which has been regarded as a huge
challenge for immunotherapy. Further clinical investiga-
tions are warranted to determine how to better harness NK
cell in combination with other cancer therapies.

Prognostic significance of NK cell in GI cancer

A large body of evidence suggests that the infiltration of
functional NK cells is closely correlated with cancer risk,
cancer stage, and patient prognosis among different cancer
types. The first evidence came from the 11-year follow up
study conducted on the general population (n= 3625) in
Japan showing that higher natural cytotoxicity of peripheral
lymphocytes, the majority of which comes from NK cells,
was associated with lower cancer risk [19]. Subsequently,
numerous clinical trials have been carried out to explore the
relationship between NK cell activity and cancer stage and
clinical outcome in GI cancers (Table 2). Consistently, low
infiltration of functional NK cells predicted advanced

disease stage, more metastasis and post-operative recur-
rence, and poor survival in multiple cohorts of GI cancer
patients including GC, HCC, CRC, and esophageal cancer
[94, 95]. More importantly, the number and function of
peripheral NK cells also denote diagnostic and prognostic
value for CRC patients, offering a feasible way for detection
of NK cells in clinical application [96].

NK cell activity testing is useful in monitoring anti-
tumor immunity and in predicting patient outcome. How-
ever, there are some difficulties with detection of such
parameter in clinical practice, e.g., tissue biopsy and ade-
quate pre-culture of target cells with NK cells are required.
In addition, the accuracy of this method remains sub-
optimal. Finding a surrogate marker that can be easily
detected and robustly reflect the activity of NK cells in vivo
is required for further clinical application. Recently, MICA,
the ligand of human NK cell activating receptor NKG2D, is
identified as a promising biomarker for cancer. In HCC, the
soluble form of MICA (sMICA) in serum is negatively
associated with NKG2D expression level on NK cells [41].
Consistent results were obtained in the colon and pancreatic
cancer [97], implying that serum MICA could be used as a
prognostic biomarker for GI cancer patients. Likewise, in
patients with advanced HCC, NKp30, another activating
receptor of NK cells, is found to be downregulated by
serum B7-H6 released from tumor cells [98]. Moreover,
intratumoral IL-37 expression was positively correlated
with infiltrating CD57+ NK cells, and higher IL-37
expression predicted smaller tumor size and better survi-
val for HCC patients [99]. Further investigation into the
above mentioned molecules and cytokines is necessary
before implementation of these findings into clinical
practice.

Conclusion and perspective

With the great success of immune checkpoint inhibitors
represented by anti-PD1/PD-L1 and anti-CTLA4 in multi-
ple cancers, the T-cell-centered immunotherapy posed a
milestone for cancer treatment. More importantly, it pro-
vides us with a novel direction of inducing robust immune
responses to tumors, which is superior to traditional che-
motherapy as there is better therapeutic efficiency and is
associated with less toxicities and debilitating side effects.
Originally starting from the cytotoxic T lymphocytes, many
other immune cells later attracted scientists’ interests in the
field of cancer immunity. The exponentially growing
understanding of NK cell unveiled the fact that this natural
cytotoxic innate immune cell plays a vital role in cancer
immune surveillance via modulation of both the innate and
adaptive immunity. Also, the similarities between NK cells
and T cells further indicate the great promise that NK cells
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hold in cancer therapy. Harnessing NK cell in cancer
immunotherapy is an intriguing idea, leading to the devel-
opment of numerous clinical trials, albeit multiple difficul-
ties being encountered.

Late diagnosis, poor therapeutic efficiency, and high
recurrence rate make GI cancer one of the major causes of
cancer-related mortalities worldwide. There is continued
need to improve therapeutic efficiency and early diagnosis.
However, the current attempts on the FDA-approved
immune agents such as Pembrolizumab in GI malig-
nancies did not show very encouraging results as in mela-
noma and lung cancer. Further investigations are needed for
better manipulation of the immune system to improve the
therapeutic efficiency. Here we summarized the current
investigations on NK cell in GI malignancies. Compelling
evidence has shown that NK cells are involved in GI cancer,
ranging from the human data to animal model-based
mechanism investigation. However, we are just at the
beginning of immunotherapy in GI cancer. For the NK-cell-
based immunotherapy, the particular challenge is to suc-
cessfully translate the current knowledge into clinical GI
cancer treatment. Positive results are expected for the
ongoing clinical trials. Finally, considering the close inter-
play of the innate and adaptive immunity and complex
interactions among different kinds of immune cells, future
studies will need to address the gaps on how to combine
different types of immune cells in the treatment strategies to
achieve synthetic anti-tumor immunity, and hence better
clinical response.
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