Plectin is a regulator of prostate cancer growth and metastasis

Abstract

Prostate cancer is responsible for over 30,000 US deaths annually, attributed largely to incurable metastatic disease. Here, we demonstrate that high levels of plectin are associated with localized and metastatic human prostate cancer when compared to benign prostate tissues. Knock-down of plectin inhibits prostate cancer cell growth and colony formation in vitro, and growth of prostate cancer xenografts in vivo. Plectin knock-down further impairs aggressive and invasive cellular behavior assessed by migration, invasion, and wound healing in vitro. Consistently, plectin knock-down cells have impaired metastatic colonization to distant sites including liver, lung, kidney, bone, and genitourinary system. Plectin knock-down inhibited number of metastases per organ, as well as decreased overall metastatic burden. To gain insights into the role of plectin in prostate cancer growth and metastasis, we performed proteomic analysis of prostate cancer plectin knock-down xenograft tissues. Gene set enrichment analysis shows an increase in levels of proteins involved with extracellular matrix and laminin interactions, and a decrease in levels of proteins regulating amino acid metabolism, cytoskeletal proteins, and cellular response to stress. Collectively these findings demonstrate that plectin is an important regulator of prostate cancer cell growth and metastasis.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Plectin levels are increased in human prostate cancer.
Fig. 2: Plectin knock-down inhibits prostate cancer cell growth in vitro and in vivo.
Fig. 3: Proteomic analysis identifies the effects of plectin knock-down on cellular organization.
Fig. 4: Plectin knock-down inhibits migration and invasion of prostate cancer cells in vitro.
Fig. 5: Plectin knock-down impairs prostate cancer homing to distant sites in vivo.

References

  1. 1.

    Siegel RL, Miller KD, Jemal A. Cancer statistics, 2020. CA: Cancer J Clin. 2020;70:7–30.

    Google Scholar 

  2. 2.

    Bubendorf L, Schopfer A, Wagner U, Sauter G, Moch H, Willi N, et al. Metastatic patterns of prostate cancer: an autopsy study of 1,589 patients. Hum Pathol. 2000;31:578–83.

    CAS  PubMed  Google Scholar 

  3. 3.

    Drake CG. Visceral metastases and prostate cancer treatment: ‘die hard,’ ‘tough neighborhoods,’ or ‘evil humors’? Oncol (Williston Park). 2014;28:974–80.

    Google Scholar 

  4. 4.

    Bekelman JE, Rumble RB, Chen RC, Pisansky TM, Finelli A, Feifer A. et al. Clinically Localized Prostate Cancer: ASCO Clinical Practice Guideline Endorsement of an American Urological Association/American Society for Radiation Oncology/Society of Urologic Oncology Guideline. J Clin Oncol. 2018;14:618–24.

    Google Scholar 

  5. 5.

    Damber JE, Aus G. Prostate cancer. Lancet. 2008;371:1710–21.

    PubMed  Google Scholar 

  6. 6.

    de Bono JS, Logothetis CJ, Molina A, Fizazi K, North S, Chu L, et al. Abiraterone and increased survival in metastatic prostate cancer. N Engl J Med. 2011;364:1995–2005.

    PubMed  PubMed Central  Google Scholar 

  7. 7.

    Fizazi K, Scher HI, Molina A, Logothetis CJ, Chi KN, Jones RJ, et al. Abiraterone acetate for treatment of metastatic castration-resistant prostate cancer: final overall survival analysis of the COU-AA-301 randomised, double-blind, placebo-controlled phase 3 study. Lancet Oncol. 2012;13:983–92.

    CAS  PubMed  Google Scholar 

  8. 8.

    Ryan CJ, Smith MR, Fong L, Rosenberg JE, Kantoff P, Raynaud F, et al. Phase I clinical trial of the CYP17 inhibitor abiraterone acetate demonstrating clinical activity in patients with castration-resistant prostate cancer who received prior ketoconazole therapy. J Clin Oncol. 2010;28:1481–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. 9.

    Ryan CJ, Smith MR, de Bono JS, Molina A, Logothetis CJ, de Souza P, et al. Abiraterone in metastatic prostate cancer without previous chemotherapy. N Engl J Med. 2013;368:138–48.

    CAS  PubMed  Google Scholar 

  10. 10.

    Ryan CJ, Smith MR, Fizazi K, Saad F, Mulders PF, Sternberg CN, et al. Abiraterone acetate plus prednisone versus placebo plus prednisone in chemotherapy-naive men with metastatic castration-resistant prostate cancer (COU-AA-302): final overall survival analysis of a randomised, double-blind, placebo-controlled phase 3 study. Lancet Oncol. 2015;16:152–60.

    CAS  PubMed  Google Scholar 

  11. 11.

    Beer TM, Armstrong AJ, Rathkopf DE, Loriot Y, Sternberg CN, Higano CS, et al. Enzalutamide in metastatic prostate cancer before chemotherapy. N Engl J Med. 2014;371:424–33.

    PubMed  PubMed Central  Google Scholar 

  12. 12.

    Evans CP, Higano CS, Keane T, Andriole G, Saad F, Iversen P, et al. The PREVAIL Study: primary Outcomes by Site and Extent of Baseline Disease for Enzalutamide-treated Men with Chemotherapy-naïve Metastatic Castration-resistant Prostate Cancer. Eur Urol. 2016;70:675–83.

    PubMed  Google Scholar 

  13. 13.

    Graff JN, Gordon MJ, Beer TM. Safety and effectiveness of enzalutamide in men with metastatic, castration-resistant prostate cancer. Expert Opin Pharmacother. 2015;16:749–54.

    CAS  PubMed  Google Scholar 

  14. 14.

    Rice MA, Malhotra SV, Stoyanova T. Second-Generation Antiandrogens: from Discovery to Standard of Care in Castration Resistant Prostate Cancer. Front Oncol. 2019;9:801.

    PubMed  PubMed Central  Google Scholar 

  15. 15.

    Kyriakopoulos CE, Chen Y-H, Carducci MA, Liu G, Jarrard DF, Hahn NM, et al. Chemohormonal Therapy in Metastatic Hormone-Sensitive Prostate Cancer: Long-Term Survival Analysis of the Randomized Phase III E3805 CHAARTED Trial. J Clin Oncol. 2018;36:1080–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. 16.

    de Wit R, de Bono J, Sternberg CN, Fizazi K, Tombal B, Wülfing C, et al. Cabazitaxel versus Abiraterone or Enzalutamide in Metastatic Prostate Cancer. N Engl J Med. 2019;381:2506–18.

    PubMed  Google Scholar 

  17. 17.

    Small EJ, Schellhammer PF, Higano CS, Redfern CH, Nemunaitis JJ, Valone FH, et al. Placebo-Controlled Phase III Trial of Immunologic Therapy with Sipuleucel-T (APC8015) in Patients with Metastatic, Asymptomatic Hormone Refractory Prostate Cancer. J Clin Oncol. 2006;24:3089–94.

    CAS  PubMed  Google Scholar 

  18. 18.

    Wiche G. Role of plectin in cytoskeleton organization and dynamics. J Cell Sci. 1998;111(Pt 17):2477–86.

    CAS  PubMed  Google Scholar 

  19. 19.

    Ševčík J, Urbániková L, Košt’an J, Janda L, Wiche G. Actin-binding domain of mouse plectin. Eur J Biochem. 2004;271:1873–84.

    PubMed  Google Scholar 

  20. 20.

    Sutoh Yoneyama M, Hatakeyama S, Habuchi T, Inoue T, Nakamura T, Funyu T, et al. Vimentin intermediate filament and plectin provide a scaffold for invadopodia, facilitating cancer cell invasion and extravasation for metastasis. Eur J Cell Biol. 2014;93:157–69.

    CAS  PubMed  Google Scholar 

  21. 21.

    Burgstaller G, Gregor M, Winter L, Wiche G. Keeping the vimentin network under control: cell-matrix adhesion-associated plectin 1f affects cell shape and polarity of fibroblasts. Mol Biol Cell. 2010;21:3362–75.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. 22.

    Osmanagic-Myers S, Rus S, Wolfram M, Brunner D, Goldmann WH, Bonakdar N, et al. Plectin reinforces vascular integrity by mediating crosstalk between the vimentin and the actin networks. J Cell Sci. 2015;128:4138.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. 23.

    Raymond AC, Gao B, Girard L, Minna JD, Gomika Udugamasooriya D. Unbiased peptoid combinatorial cell screen identifies plectin protein as a potential biomarker for lung cancer stem cells. Sci Rep. 2019;9:14954.

    PubMed  PubMed Central  Google Scholar 

  24. 24.

    Wiche G, Winter L. Plectin isoforms as organizers of intermediate filament cytoarchitecture. Bioarchitecture. 2011;1:14–20.

    PubMed  PubMed Central  Google Scholar 

  25. 25.

    Winter L, Wiche G. The many faces of plectin and plectinopathies: pathology and mechanisms. Acta Neuropathol. 2013;125:77–93.

    CAS  PubMed  Google Scholar 

  26. 26.

    Osmanagic-Myers S, Wiche G. Plectin-RACK1 (receptor for activated C kinase 1) scaffolding: a novel mechanism to regulate protein kinase C activity. J Biol Chem. 2004;279:18701–10.

    CAS  PubMed  Google Scholar 

  27. 27.

    Osmanagic-Myers S, Gregor M, Walko G, Burgstaller G, Reipert S, Wiche G. Plectin-controlled keratin cytoarchitecture affects MAP kinases involved in cellular stress response and migration. J Cell Biol. 2006;174:557–68.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. 28.

    Bausch D, Thomas S, Mino-Kenudson M, Fernández-del CC, Bauer TW, Williams M, et al. Plectin-1 as a Novel Biomarker for Pancreatic Cancer. Clin Cancer Res. 2011;17:302–9.

    CAS  PubMed  Google Scholar 

  29. 29.

    Katada K, Tomonaga T, Satoh M, Matsushita K, Tonoike Y, Kodera Y, et al. Plectin promotes migration and invasion of cancer cells and is a novel prognostic marker for head and neck squamous cell carcinoma. J Proteom. 2012;75:1803–15.

    CAS  Google Scholar 

  30. 30.

    Shin SJ, Smith JA, Rezniczek GA, Pan S, Chen R, Brentnall TA, et al. Unexpected gain of function for the scaffolding protein plectin due to mislocalization in pancreatic cancer. Proc Natl Acad Sci. 2013;110:19414–9.

    CAS  PubMed  Google Scholar 

  31. 31.

    Koster J, van Wilpe S, Kuikman I, Litjens SHM, Sonnenberg A. Role of binding of plectin to the integrin beta4 subunit in the assembly of hemidesmosomes. Mol Biol Cell. 2004;15:1211–23.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. 32.

    Litjens SH, de Pereda JM, Sonnenberg A. Current insights into the formation and breakdown of hemidesmosomes. Trends Cell Biol. 2006;16:376–83.

    CAS  PubMed  Google Scholar 

  33. 33.

    Song J-G, Kostan J, Drepper F, Knapp B, de Almeida Ribeiro E Jr., Konarev Petr V, et al. Structural Insights into Ca2+-Calmodulin Regulation of Plectin 1a-Integrin β4 Interaction in Hemidesmosomes. Structure. 2015;23:558–70.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. 34.

    Andra K, Lassmann H, Bittner R, Shorny S, Fassler R, Propst F, et al. Targeted inactivation of plectin reveals essential function in maintaining the integrity of skin, muscle, and heart cytoarchitecture. Genes Dev. 1997;11:3143–56.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. 35.

    Humphreys DT, Carver JA, Easterbrook-Smith SB, Wilson MR. Clusterin Has Chaperone-like Activity Similar to That of Small Heat Shock Proteins. J Biol Chem. 1999;274:6875–81.

    CAS  PubMed  Google Scholar 

  36. 36.

    Peng M, Deng J, Zhou S, Tao T, Su Q, Yang X, et al. The role of Clusterin in cancer metastasis. Cancer Manag Res. 2019;11:2405–14.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. 37.

    Shapiro B, Tocci P, Haase G, Gavert N, Ben-Ze’ev A. Clusterin, a gene enriched in intestinal stem cells, is required for L1-mediated colon cancer metastasis. Oncotarget. 2015;6:34389–401.

    PubMed  PubMed Central  Google Scholar 

  38. 38.

    Wang C, Jin G, Jin H, Wang N, Luo Q, Zhang Y, et al. Clusterin facilitates metastasis by EIF3I/Akt/MMP13 signaling in hepatocellular carcinoma. Oncotarget. 2015;6:2903–16.

    PubMed  Google Scholar 

  39. 39.

    Zhu Y, Chen P, Gao Y, Ta N, Zhang Y, Cai J, et al. MEG3 Activated by Vitamin D Inhibits Colorectal Cancer Cells Proliferation and Migration via Regulating Clusterin. EBioMedicine. 2018;30:148–57.

    PubMed  PubMed Central  Google Scholar 

  40. 40.

    Kim N, Han JY, Roh GS, Kim HJ, Kang SS, Cho GJ, et al. Nuclear clusterin is associated with neuronal apoptosis in the developing rat brain upon ethanol exposure. Alcohol Clin Exp Res. 2012;36:72–82.

    CAS  PubMed  Google Scholar 

  41. 41.

    Scaltriti M, Santamaria A, Paciucci R, Bettuzzi S. Intracellular Clusterin Induces G2/M Phase Arrest and Cell Death in PC-3 Prostate Cancer Cells. Cancer Res. 2004;64:6174–82.

    CAS  PubMed  Google Scholar 

  42. 42.

    Knott SRV, Wagenblast E, Khan S, Kim SY, Soto M, Wagner M, et al. Asparagine bioavailability governs metastasis in a model of breast cancer. Nature. 2018;554:378–81.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. 43.

    Porporato PE, Payen VL, Baselet B, Sonveaux P. Metabolic changes associated with tumor metastasis, part 2: Mitochondria, lipid and amino acid metabolism. Cell Mol Life Sci. 2016;73:1349–63.

    CAS  PubMed  Google Scholar 

  44. 44.

    Zhou W, Gui M, Zhu M, Long Z, Huang L, Zhou J, et al. Nicotinamide N-methyltransferase is overexpressed in prostate cancer and correlates with prolonged progression-free and overall survival times. Oncol Lett. 2014;8:1175–80.

    PubMed  PubMed Central  Google Scholar 

  45. 45.

    DeBerardinis RJ, Cheng T. Q’s next: the diverse functions of glutamine in metabolism, cell biology and cancer. Oncogene. 2010;29:313–24.

    CAS  PubMed  Google Scholar 

  46. 46.

    Strmiska V, Michalek P, Eckschlager T, Stiborova M, Adam V, Krizkova S, et al. Prostate cancer-specific hallmarks of amino acids metabolism: towards a paradigm of precision medicine. Biochim Biophys Acta Rev Cancer. 2019;1871:248–58.

    CAS  PubMed  Google Scholar 

  47. 47.

    Burch TC, Watson MT, Nyalwidhe JO. Variable metastatic potentials correlate with differential plectin and vimentin expression in syngeneic androgen independent prostate cancer cells. PLoS ONE. 2013;8:e65005–e65005.

    PubMed  PubMed Central  Google Scholar 

  48. 48.

    Huang J, Yao JL, Zhang L, Bourne PA, Quinn AM, di Sant’Agnese PA, et al. Differential expression of interleukin-8 and its receptors in the neuroendocrine and non-neuroendocrine compartments of prostate cancer. Am J Pathol. 2005;166:1807–15.

    CAS  PubMed  PubMed Central  Google Scholar 

  49. 49.

    Wang J, Place RF, Huang V, Wang X, Noonan EJ, Magyar CE, et al. Prognostic value and function of KLF4 in prostate cancer: RNAa and vector-mediated overexpression identify KLF4 as an inhibitor of tumor cell growth and migration. Cancer Res. 2010;70:10182–91.

    CAS  PubMed  PubMed Central  Google Scholar 

  50. 50.

    Hsu EC, Rice MA, Bermudez A, Marques FJG, Aslan M, Liu S, et al. Trop2 is a driver of metastatic prostate cancer with neuroendocrine phenotype via PARP1. Proc Natl Acad Sci USA. 2020;117:2032–42.

    CAS  PubMed  Google Scholar 

  51. 51.

    Rice MA, Hsu EC, Aslan M, Ghoochani A, Su A, Stoyanova T. Loss of Notch1 activity inhibits prostate cancer growth and metastasis and sensitizes prostate cancer cells to anti-androgen therapies. Mol Cancer Ther. 2019;18:1230–42.

    CAS  PubMed  PubMed Central  Google Scholar 

  52. 52.

    Stoyanova T, Riedinger M, Lin S, Faltermeier CM, Smith BA, Zhang KX, et al. Activation of Notch1 synergizes with multiple pathways in promoting castration-resistant prostate cancer. Proc Natl Acad Sci USA. 2016;113:E6457–66.

    CAS  PubMed  Google Scholar 

  53. 53.

    Sarbassov DD, Guertin DA, Ali SM, Sabatini DM. Phosphorylation and regulation of Akt/PKB by the rictor-mTOR complex. Science. 2005;307:1098–101.

    CAS  PubMed  Google Scholar 

  54. 54.

    Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, et al. Fiji: an open-source platform for biological-image analysis. Nat Methods. 2012;9:676–82.

    CAS  PubMed  Google Scholar 

  55. 55.

    Gatto L, Lilley KS. MSnbase-an R/Bioconductor package for isobaric tagged mass spectrometry data visualization, processing and quantitation. Bioinformatics. 2012;28:288–9.

    CAS  PubMed  Google Scholar 

  56. 56.

    Navarro P, Trevisan-Herraz M, Bonzon-Kulichenko E, Nunez E, Martinez-Acedo P, Perez-Hernandez D, et al. General statistical framework for quantitative proteomics by stable isotope labeling. J Proteome Res. 2014;13:1234–47.

    CAS  PubMed  Google Scholar 

  57. 57.

    Tyanova S, Temu T, Sinitcyn P, Carlson A, Hein MY, Geiger T, et al. The Perseus computational platform for comprehensive analysis of (prote)omics data. Nat Methods. 2016;13:731–40.

    CAS  PubMed  Google Scholar 

  58. 58.

    Mi H, Muruganujan A, Huang X, Ebert D, Mills C, Guo X, et al. Protocol Update for large-scale genome and gene function analysis with the PANTHER classification system (v.14.0). Nat Protoc. 2019;14:703–21.

    CAS  PubMed  PubMed Central  Google Scholar 

  59. 59.

    Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA, et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci. 2005;102:15545.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

TS is supported by Canary Foundation, National Institutes of Health/National Cancer Institute (NCI) R37CA240822, R01CA244281 and R03CA230819. TS was also supported by the U.S. Army Medical Research Acquisition Activity through the Congressionally Directed Medical Research Program (CDMRP) Award No. W81XWH1810323. MAR is supported by the U.S. Army Medical Research Acquisition Activity, through the CDMRP Award No. W81XWH1810141. Research reported in this publication was supported in part by the National Institutes of Health under award number S10 OD023518–01A1 for the Celigo S Imaging Cytometer (200-BFFL-S). Opinions, interpretation, conclusions and recommendations are those of the authors and not necessarily endorsed by the US Army and the funding agencies.

Funding

TS is supported by the Canary Foundation, the National Institutes of Health/National Cancer Institute (NCI) R37CA240822, R01CA244281 and R03CA230819. MAR is supported by the CDMRP through Award No. W81XWH1810141.

Author information

Affiliations

Authors

Contributions

MB, MAR, ECH, FGM, AB, SJP and TS designed research. MB, MAR, ECH, SL, MA, FGM and AB performed research. JH contributed reagents. MB, MAR, FGM, SJP and TS analyzed data. MB, MAR, FGM, AB, SJP, JH and TS wrote and edited the paper.

Corresponding author

Correspondence to Tanya Stoyanova.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Buckup, M., Rice, M.A., Hsu, EC. et al. Plectin is a regulator of prostate cancer growth and metastasis. Oncogene (2020). https://doi.org/10.1038/s41388-020-01557-9

Download citation

Search