EAG1 enhances hepatocellular carcinoma proliferation by modulating SKP2 and metastasis through pseudopod formation

Abstract

Ether-à-go-go-1 (EAG1), one of the potassium channels, is involved in various physiological processes and plays an important role in the tumorigenesis of many kinds of cancer. EAG1 is highly expressed in hepatocarcinoma cells and is closely related to clinical prognosis, but the molecular mechanism remains elusive. In this study, we verified that EAG1 promotes the proliferation of hepatocellular carcinoma (HCC) both in vitro and in vivo. It promotes cell cycle progression by inhibiting the ubiquitination of SKP2. In addition, EAG1 promotes the migration and invasion of HCC by promoting cell pseudopod formation. Furthermore, in a high-pressure plasmid-injected mouse liver orthotopic carcinoma model, astemizole, an EAG family blocker, can significantly inhibit the formation of liver cancer. Meanwhile, liver-specific EAG1 knockout mice show resistance to hepatocarcinogenesis. This research demonstrated that EAG1 plays an important role in the progression of HCC, and could be a potential therapeutic target for HCC.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: EAG1 promoted cell proliferation of two HCC cell lines.
Fig. 2: Changes in EAG1 affected cell cycle progression and cell cycle-related proteins.
Fig. 3: EAG1 affected SKP2 protein degradation.
Fig. 4: EAG1 promoted cell proliferation by regulating SKP2.
Fig. 5: EAG1 promoted cell migration and invasion of HCC in vitro and in vivo.
Fig. 6: Inhibition of EAG1 prevented the HCC formation.
Fig. 7: Expression of EAG1 was upregulated in HCC tissues and positively correlated with SKP2.

References

  1. 1.

    Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D. Global cancer statistics. CA Cancer J Clin. 2011;61:69–90.

    Article  Google Scholar 

  2. 2.

    Torre LA, Bray F, Siegel RL, Ferlay J, Lortet-Tieulent J, Jemal A. Global cancer statistics, 2012. CA Cancer J Clin. 2015;65:87–108.

    Article  Google Scholar 

  3. 3.

    Bertuccio P, Turati F, Carioli G, Rodriguez T, La Vecchia C, Malvezzi M, et al. Global trends and predictions in hepatocellular carcinoma mortality. J Hepatol. 2017;67:302–9.

    Article  Google Scholar 

  4. 4.

    Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018;68:394–424.

    Article  Google Scholar 

  5. 5.

    Yang JD, Roberts LR. Hepatocellular carcinoma: a global view. Nat Rev Gastroenterol Hepatol. 2010;7:448–58.

    Article  Google Scholar 

  6. 6.

    El-Serag HB. Epidemiology of viral hepatitis and hepatocellular carcinoma. Gastroenterology. 2012;142:1264–73.e1261.

    Article  Google Scholar 

  7. 7.

    Stotz M, Gerger A, Haybaeck J, Kiesslich T, Bullock MD, Pichler M. Molecular Targeted Therapies in Hepatocellular Carcinoma: Past, Present and Future. Anticancer Res. 2015;35:5737–44.

    PubMed  CAS  Google Scholar 

  8. 8.

    Wickenden A. K(+) channels as therapeutic drug targets. Pharm Ther. 2002;94:157–82.

    Article  CAS  Google Scholar 

  9. 9.

    Haitin Y, Carlson AE, Zagotta WN. The structural mechanism of KCNH-channel regulation by the eag domain. Nature. 2013;501:444–8.

    Article  CAS  Google Scholar 

  10. 10.

    Diaz L, Ceja-Ochoa I, Restrepo-Angulo I, Larrea F, Avila-Chavez E, Garcia-Becerra R, et al. Estrogens and human papilloma virus oncogenes regulate human ether-a-go-go-1 potassium channel expression. Cancer Res. 2009;69:3300–7.

    Article  CAS  Google Scholar 

  11. 11.

    Liu GX, Yu YC, He XP, Ren SN, Fang XD, Liu F, et al. Expression of eag1 channel associated with the aggressive clinicopathological features and subtype of breast cancer. Int J Clin Exp Pathol. 2015;8:15093–9.

    PubMed  PubMed Central  CAS  Google Scholar 

  12. 12.

    de Guadalupe Chavez-Lopez M, Perez-Carreon JI, Zuniga-Garcia V, Diaz-Chavez J, Herrera LA, Caro-Sanchez CH, et al. Astemizole-based anticancer therapy for hepatocellular carcinoma (HCC), and Eag1 channels as potential early-stage markers of HCC. Tumour Biol. 2015;36:6149–58.

    Article  CAS  Google Scholar 

  13. 13.

    Pardo LA, Stuhmer W. The roles of K(+) channels in cancer. Nat Rev Cancer. 2014;14:39–48.

    Article  CAS  Google Scholar 

  14. 14.

    Wang X, Chen Y, Zhang Y, Guo S, Mo L, An H, et al. Eag1 Voltage-Dependent Potassium Channels: structure, Electrophysiological Characteristics, and Function in Cancer. J Membr Biol. 2017;250:123–32.

    Article  CAS  Google Scholar 

  15. 15.

    de Guadalupe Chavez-Lopez M, Hernandez-Gallegos E, Vazquez-Sanchez AY, Gariglio P, Camacho J. Antiproliferative and proapoptotic effects of astemizole on cervical cancer cells. Int J Gynecol Cancer. 2014;24:824–8.

    Article  Google Scholar 

  16. 16.

    Chen X, Calvisi DF. Hydrodynamic transfection for generation of novel mouse models for liver cancer research. Am J Pathol. 2014;184:912–23.

    Article  CAS  Google Scholar 

  17. 17.

    Calvisi DF, Wang C, Ho C, Ladu S, Lee SA, Mattu S, et al. Increased lipogenesis, induced by AKT-mTORC1-RPS6 signaling, promotes development of human hepatocellular carcinoma. Gastroenterology. 2011;140:1071–83.

    Article  CAS  Google Scholar 

  18. 18.

    Liu YT, Tseng TC, Soong RS, Peng CY, Cheng YH, Huang SF, et al. A novel spontaneous hepatocellular carcinoma mouse model for studying T-cell exhaustion in the tumor microenvironment. J Immunother Cancer. 2018;6:144.

    Article  Google Scholar 

  19. 19.

    Guo X, Zhao Y, Yan H, Yang Y, Shen S, Dai X, et al. Single tumor-initiating cells evade immune clearance by recruiting type II macrophages. Genes Dev. 2017;31:247–59.

    Article  CAS  Google Scholar 

  20. 20.

    Garcia-Quiroz J, Camacho J. Astemizole: an old anti-histamine as a new promising anti-cancer drug. Anticancer Agents Med Chem. 2011;11:307–14.

    Article  CAS  Google Scholar 

  21. 21.

    Nakayama KI, Nakayama K. Regulation of the cell cycle by SCF-type ubiquitin ligases. Semin Cell Dev Biol. 2005;16:323–33.

    Article  CAS  Google Scholar 

  22. 22.

    Zheng N, Schulman BA, Song L, Miller JJ, Jeffrey PD, Wang P, et al. Structure of the Cul1-Rbx1-Skp1-F boxSkp2 SCF ubiquitin ligase complex. Nature. 2002;416:703–9.

    Article  CAS  Google Scholar 

  23. 23.

    Uddin S, Bhat AA, Krishnankutty R, Mir F, Kulinski M, Mohammad RM. Involvement of F-BOX proteins in progression and development of human malignancies. Semin Cancer Biol. 2016;36:18–32.

    Article  CAS  Google Scholar 

  24. 24.

    Yu ZK, Gervais JL, Zhang H. Human CUL-1 associates with the SKP1/SKP2 complex and regulates p21(CIP1/WAF1) and cyclin D proteins. Proc Natl Acad Sci USA. 1998;95:11324–9.

    Article  CAS  Google Scholar 

  25. 25.

    Wei Z, Jiang X, Qiao H, Zhai B, Zhang L, Zhang Q, et al. STAT3 interacts with Skp2/p27/p21 pathway to regulate the motility and invasion of gastric cancer cells. Cell Signal. 2013;25:931–8.

    Article  CAS  Google Scholar 

  26. 26.

    Gstaiger M, Jordan R, Lim M, Catzavelos C, Mestan J, Slingerland J, et al. Skp2 is oncogenic and overexpressed in human cancers. Proc Natl Acad Sci USA. 2001;98:5043–8.

    Article  CAS  Google Scholar 

  27. 27.

    Signoretti S, Di Marcotullio L, Richardson A, Ramaswamy S, Isaac B, Rue M, et al. Oncogenic role of the ubiquitin ligase subunit Skp2 in human breast cancer. J Clin Investig. 2016;126:4387.

    Article  Google Scholar 

  28. 28.

    Chen TP, Chen CM, Chang HW, Wang JS, Chang WC, Hsu SI, et al. Increased expression of SKP2 and phospho-MAPK/ERK1/2 and decreased expression of p27 during tumor progression of cervical neoplasms. Gynecol Oncol. 2007;104:516–23.

    Article  CAS  Google Scholar 

  29. 29.

    Yoshida Y, Ninomiya K, Hamada H, Noda M. Involvement of the SKP2-p27(KIP1) pathway in suppression of cancer cell proliferation by RECK. Oncogene. 2012;31:4128–38.

    Article  CAS  Google Scholar 

  30. 30.

    Vaiana SM, Manno M, Emanuele A, Palma-Vittorelli MB, Palma MU. The role of solvent in protein folding and in aggregation. J Biol Phys. 2001;27:133–45.

    Article  CAS  Google Scholar 

  31. 31.

    Glickman MH, Ciechanover A. The ubiquitin-proteasome proteolytic pathway: destruction for the sake of construction. Physiol Rev. 2002;82:373–428.

    Article  CAS  Google Scholar 

  32. 32.

    Mukhopadhyay D, Riezman H. Proteasome-independent functions of ubiquitin in endocytosis and signaling. Science. 2007;315:201–5.

    Article  CAS  Google Scholar 

  33. 33.

    Schnell JD, Hicke L. Non-traditional functions of ubiquitin and ubiquitin-binding proteins. J Biol Chem. 2003;278:35857–60.

    Article  CAS  Google Scholar 

  34. 34.

    Sheterline P, Clayton J, Sparrow J. Actin. Protein Profile. 1995;2:1–103.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (81272675 and 81870434) to PS, the Key Research and Development Plan of Zhejiang Province (2020C04003) to PS, the National S&T Major Project (2017ZX10203205) to SZ.

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Shusen Zheng or Penghong Song.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Chen, J., Xuan, Z., Song, W. et al. EAG1 enhances hepatocellular carcinoma proliferation by modulating SKP2 and metastasis through pseudopod formation. Oncogene (2020). https://doi.org/10.1038/s41388-020-01522-6

Download citation

Search