Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Tenascin C promotes cancer cell plasticity in mesenchymal glioblastoma

Abstract

Interconversion of transformed non-stem cells to cancer stem cells, termed cancer cell plasticity, contributes to intra-tumor heterogeneity and its molecular mechanisms are currently unknown. Here, we have identified Tenascin C (TNC) to be upregulated and secreted in mesenchymal glioblastoma (MES GBM) subtype with high NF-κB signaling activity. Silencing TNC decreases proliferation, migration and suppresses self-renewal of glioma stem cells. Loss of TNC in MES GBM compromises de-differentiation of transformed astrocytes and blocks the ability of glioma stem cells to differentiate into tumor derived endothelial cells (TDEC). Inhibition of NF-κB activity or TNC knockdown in tumor cells decreased their tumorigenic potential in vivo. Our results uncover a link between NF-κB activation in MES GBM and high levels of TNC in GBM extracellular matrix. We suggest that TNC plays an important role in the autocrine regulation of glioma cell plasticity and hence can be a potential molecular target for MES GBM.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: TNC is overexpressed in lentiviral-induced MES GBM mouse model.
Fig. 2: Silencing TNC reduces glioma cell proliferation and invasion, induces apoptosis and affects stem cell maintenance in vitro.
Fig. 3: Depletion of TNC compromises glioma cell plasticity.
Fig. 4: Silencing TNC impairs endothelial differentiation of glioma stem cells.
Fig. 5: Blocking NF-κB signaling reduces TNC expression and impairs glioma cell plasticity.
Fig. 6: Silencing TNC suppresses murine 005 tumor growth and reduces blood vessel formation.
Fig. 7: Specific inhibition of TNC in human GBM-bearing mice improves survival.

Similar content being viewed by others

References

  1. Furnari FB, Fenton T, Bachoo RM, Mukasa A, Stommel JM, Stegh A, et al. Malignant astrocytic glioma: genetics, biology, and paths to treatment. Genes Dev. 2007;21:2683–710.

    CAS  PubMed  Google Scholar 

  2. Friedmann-Morvinski D. Glioblastoma heterogeneity and cancer cell plasticity. Crit Rev Oncog. 2014;19:327–36.

    PubMed  Google Scholar 

  3. Phillips HS, Kharbanda S, Chen R, Forrest WF, Soriano RH, Wu TD, et al. Molecular subclasses of high-grade glioma predict prognosis, delineate a pattern of disease progression, and resemble stages in neurogenesis. Cancer Cell. 2006;9:157–73.

    CAS  PubMed  Google Scholar 

  4. Verhaak RG, Hoadley KA, Purdom E, Wang V, Qi Y, Wilkerson MD, et al. Integrated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in PDGFRA, IDH1, EGFR, and NF1. Cancer Cell. 2010;17:98–110.

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Friedmann-Morvinski D, Verma IM. Dedifferentiation and reprogramming: origins of cancer stem cells. EMBO Rep. 2014;15:244–53.

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Chaffer CL, Marjanovic ND, Lee T, Bell G, Kleer CG, Reinhardt F, et al. Poised chromatin at the ZEB1 promoter enables breast cancer cell plasticity and enhances tumorigenicity. Cell. 2013;154:61–74.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Ischenko I, Zhi J, Moll UM, Nemajerova A, Petrenko O. Direct reprogramming by oncogenic Ras and Myc. Proc Natl Acad Sci USA. 2013;110:3937–42.

    CAS  PubMed  Google Scholar 

  8. Mani SA, Guo W, Liao MJ, Eaton EN, Ayyanan A, Zhou AY, et al. The epithelial-mesenchymal transition generates cells with properties of stem cells. Cell. 2008;133:704–15.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Schwitalla S, Fingerle AA, Cammareri P, Nebelsiek T, Goktuna SI, Ziegler PK, et al. Intestinal tumorigenesis initiated by dedifferentiation and acquisition of stem-cell-like properties. Cell. 2013;152:25–38.

    CAS  PubMed  Google Scholar 

  10. Friedmann-Morvinski D, Bushong EA, Ke E, Soda Y, Marumoto T, Singer O, et al. Dedifferentiation of neurons and astrocytes by oncogenes can induce gliomas in mice. Science. 2012;338:1080–4.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Soda Y, Marumoto T, Friedmann-Morvinski D, Soda M, Liu F, Michiue H, et al. Transdifferentiation of glioblastoma cells into vascular endothelial cells. Proc Natl Acad Sci USA. 2011;108:4274–80.

    CAS  PubMed  Google Scholar 

  12. Poltavets V, Kochetkova M, Pitson SM, Samuel MS. The role of the extracellular matrix and its molecular and cellular regulators in cancer cell plasticity. Front Oncol. 2018;8:431.

    PubMed  PubMed Central  Google Scholar 

  13. Midwood KS, Chiquet M, Tucker RP, Orend G. Tenascin-C at a glance. J Cell Sci. 2016;129:4321–7.

    CAS  PubMed  Google Scholar 

  14. Chiquet-Ehrismann R, Orend G, Chiquet M, Tucker RP, Midwood KS. Tenascins in stem cell niches. Matrix Biol. 2014;37:112–23.

    CAS  PubMed  Google Scholar 

  15. Brosicke N, Faissner A. Role of tenascins in the ECM of gliomas. Cell Adh Migr. 2015;9:131–40.

    PubMed  PubMed Central  Google Scholar 

  16. Lowy CM, Oskarsson T. Tenascin C in metastasis: a view from the invasive front. Cell Adh Migr. 2015;9:112–24.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Midwood KS, Hussenet T, Langlois B, Orend G. Advances in tenascin-C biology. Cell Mol Life Sci. 2011;68:3175–99.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Yoshida T, Akatsuka T, Imanaka-Yoshida K. Tenascin-C and integrins in cancer. Cell Adh Migr. 2015;9:96–104.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Miroshnikova YA, Mouw JK, Barnes JM, Pickup MW, Lakins JN, Kim Y, et al. Tissue mechanics promote IDH1-dependent HIF1alpha-tenascin C feedback to regulate glioblastoma aggression. Nat Cell Biol. 2016;18:1336–45.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Rupp T, Langlois B, Koczorowska MM, Radwanska A, Sun Z, Hussenet T, et al. Tenascin-C orchestrates glioblastoma angiogenesis by modulation of pro- and anti-angiogenic signaling. Cell Rep. 2016;17:2607–19.

    CAS  PubMed  Google Scholar 

  21. Marumoto T, Tashiro A, Friedmann-Morvinski D, Scadeng M, Soda Y, Gage FH, et al. Development of a novel mouse glioma model using lentiviral vectors. Nat Med. 2009;15:110–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Dull T, Zufferey R, Kelly M, Mandel RJ, Nguyen M, Trono D, et al. A third-generation lentivirus vector with a conditional packaging system. J Virol. 1998;72:8463–71.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Friedmann-Morvinski D, Narasimamurthy R, Xia Y, Myskiw C, Soda Y, Verma IM. Targeting NF-kappaB in glioblastoma: a therapeutic approach. Sci Adv. 2016;2:e1501292.

    PubMed  PubMed Central  Google Scholar 

  24. Zuber J, McJunkin K, Fellmann C, Dow LE, Taylor MJ, Hannon GJ, et al. Toolkit for evaluating genes required for proliferation and survival using tetracycline-regulated RNAi. Nat Biotechnol. 2011;29:79–83.

    CAS  PubMed  Google Scholar 

  25. Friedmann-Morvinski D, Bhargava V, Gupta S, Verma IM, Subramaniam S. Identification of therapeutic targets for glioblastoma by network analysis. Oncogene. 2015;35:608–20.

    PubMed  PubMed Central  Google Scholar 

  26. Saito N, Fu J, Zheng S, Yao J, Wang S, Liu DD, et al. A high Notch pathway activation predicts response to gamma secretase inhibitors in proneural subtype of glioma tumor-initiating cells. Stem Cells. 2014;32:301–12.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Bhat KP, Balasubramaniyan V, Vaillant B, Ezhilarasan R, Hummelink K, Hollingsworth F, et al. Mesenchymal differentiation mediated by NF-kappaB promotes radiation resistance in glioblastoma. Cancer Cell. 2013;24:331–46.

    CAS  PubMed  Google Scholar 

  28. Thiery JP. Epithelial-mesenchymal transitions in tumour progression. Nat Rev Cancer. 2002;2:442–54.

    CAS  PubMed  Google Scholar 

  29. Yamini B. NF-kappaB, mesenchymal differentiation and glioblastoma. Cells. 2018;7:125–43.

    CAS  PubMed Central  Google Scholar 

  30. Cabrera MC, Hollingsworth RE, Hurt EM. Cancer stem cell plasticity and tumor hierarchy. World J Stem Cells. 2015;7:27–36.

    PubMed  PubMed Central  Google Scholar 

  31. Ricci-Vitiani L, Pallini R, Biffoni M, Todaro M, Invernici G, Cenci T, et al. Tumour vascularization via endothelial differentiation of glioblastoma stem-like cells. Nature. 2010;468:824–8.

    CAS  PubMed  Google Scholar 

  32. Sarkar S, Mirzaei R, Zemp FJ, Wei W, Senger DL, Robbins SM, et al. Activation of NOTCH signaling by tenascin-C promotes growth of human brain tumor-initiating cells. Cancer Res. 2017;77:3231–43.

    CAS  PubMed  Google Scholar 

  33. Androutsellis-Theotokis A, Leker RR, Soldner F, Hoeppner DJ, Ravin R, Poser SW, et al. Notch signalling regulates stem cell numbers in vitro and in vivo. Nature. 2006;442:823–6.

    CAS  PubMed  Google Scholar 

  34. Shen Q, Goderie SK, Jin L, Karanth N, Sun Y, Abramova N, et al. Endothelial cells stimulate self-renewal and expand neurogenesis of neural stem cells. Science. 2004;304:1338–40.

    CAS  PubMed  Google Scholar 

  35. Dufraine J, Funahashi Y, Kitajewski J. Notch signaling regulates tumor angiogenesis by diverse mechanisms. Oncogene. 2008;27:5132–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Gridley T. Notch signaling in vascular development and physiology. Development. 2007;134:2709–18.

    CAS  PubMed  Google Scholar 

  37. Hovinga KE, Shimizu F, Wang R, Panagiotakos G, Van Der Heijden M, Moayedpardazi H, et al. Inhibition of notch signaling in glioblastoma targets cancer stem cells via an endothelial cell intermediate. Stem Cells. 2010;28:1019–29.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Martiny-Baron G, Holzer P, Billy E, Schnell C, Brueggen J, Ferretti M, et al. The small molecule specific EphB4 kinase inhibitor NVP-BHG712 inhibits VEGF driven angiogenesis. Angiogenesis. 2010;13:259–67.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Mettouchi A, Cabon F, Montreau N, Dejong V, Vernier P, Gherzi R, et al. The c-Jun-induced transformation process involves complex regulation of tenascin-C expression. Mol Cell Biol. 1997;17:3202–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. May MJ, D’Acquisto F, Madge LA, Glockner J, Pober JS, Ghosh S. Selective inhibition of NF-kappaB activation by a peptide that blocks the interaction of NEMO with the IkappaB kinase complex. Science. 2000;289:1550–4.

    CAS  PubMed  Google Scholar 

  41. Bottero V, Withoff S, Verma IM. NF-kappaB and the regulation of hematopoiesis. Cell Death Differ. 2006;13:785–97.

    CAS  PubMed  Google Scholar 

  42. Xia S, Lal B, Tung B, Wang S, Goodwin CR, Laterra J. Tumor microenvironment tenascin-C promotes glioblastoma invasion and negatively regulates tumor proliferation. Neuro Oncol. 2016;18:507–17.

    CAS  PubMed  Google Scholar 

  43. Nie S, Gurrea M, Zhu J, Thakolwiboon S, Heth JA, Muraszko KM, et al. Tenascin-C: a novel candidate marker for cancer stem cells in glioblastoma identified by tissue microarrays. J Proteome Res. 2015;14:814–22.

    CAS  PubMed  Google Scholar 

  44. Huse JT, Phillips HS, Brennan CW. Molecular subclassification of diffuse gliomas: seeing order in the chaos. Glia. 2011;59:1190–9.

    PubMed  Google Scholar 

  45. Nieto MA, Huang RY, Jackson RA, Thiery JP. Emt: 2016. Cell. 2016;166:21–45.

    CAS  PubMed  Google Scholar 

  46. Carro MS, Lim WK, Alvarez MJ, Bollo RJ, Zhao X, Snyder EY, et al. The transcriptional network for mesenchymal transformation of brain tumours. Nature. 2010;463:318–25.

    CAS  PubMed  Google Scholar 

  47. Finco TS, Westwick JK, Norris JL, Beg AA, Der CJ, Baldwin AS Jr. Oncogenic Ha-Ras-induced signaling activates NF-kappaB transcriptional activity, which is required for cellular transformation. J Biol Chem. 1997;272:24113–6.

    CAS  PubMed  Google Scholar 

  48. Mayo MW, Wang CY, Cogswell PC, Rogers-Graham KS, Lowe SW, Der CJ, et al. Requirement of NF-kappaB activation to suppress p53-independent apoptosis induced by oncogenic Ras. Science. 1997;278:1812–5.

    CAS  PubMed  Google Scholar 

  49. Langlois B, Saupe F, Rupp T, Arnold C, van der Heyden M, Orend G, et al. AngioMatrix, a signature of the tumor angiogenic switch-specific matrisome, correlates with poor prognosis for glioma and colorectal cancer patients. Oncotarget. 2014;5:10529–45.

    PubMed  PubMed Central  Google Scholar 

  50. Garcion E, Halilagic A, Faissner A, ffrench-Constant C. Generation of an environmental niche for neural stem cell development by the extracellular matrix molecule tenascin C. Development. 2004;131:3423–32.

    CAS  PubMed  Google Scholar 

  51. Bowman RL, Wang Q, Carro A, Verhaak RG, Squatrito M. GlioVis data portal for visualization and analysis of brain tumor expression datasets. Neuro Oncol. 2017;19:139–41.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Yifeng Xia and Eugene Ke for assistance in bioinformatic analysis, and Prof. Michal Baniyash for critically reading the manuscript. This research was supported by grants to DF-M from the Israel Science Foundation (Grant no. 1310/15), the Israel Cancer Research Fund (Research Career Development Award), and the EU-FP7 Marie Curie Actions (Career Integration Grant).

Author information

Authors and Affiliations

Authors

Contributions

DF-M designed the research, IA, OPK, LRN and DFM performed the experiments, IA and DFM analyzed the results, IA and DFM wrote the manuscript

Corresponding author

Correspondence to Dinorah Friedmann-Morvinski.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Angel, I., Pilo Kerman, O., Rousso-Noori, L. et al. Tenascin C promotes cancer cell plasticity in mesenchymal glioblastoma. Oncogene 39, 6990–7004 (2020). https://doi.org/10.1038/s41388-020-01506-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-020-01506-6

This article is cited by

Search

Quick links