Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Stroma-derived ANGPTL2 establishes an anti-tumor microenvironment during intestinal tumorigenesis

Abstract

Previous studies show that tumor cell-derived angiopoietin-like protein 2 (ANGPTL2) functions as a tumor promoter in some cancer contexts. However, we recently reported that host ANGPTL2 also shows tumor suppressive activity by enhancing dendritic cell-mediated CD8+ T cell anti-tumor immune responses in mouse kidney cancer and murine syngeneic models. However, mechanisms underlying ANGPTL2-mediated tumor suppression are complex and not well known. Here, we investigated ANGPTL2 tumor suppressive function in chemically-induced intestinal tumorigenesis. ANGPTL2 deficiency enhanced intestinal tumor growth in an experimental mouse colitis-associated colon cancer (CAC) model. Angptl2-deficient mice also showed a decrease not only in CD8+ T cell responses but in CD4+ T cell responses during intestinal tumorigenesis. Furthermore, we show that stroma-derived ANGPTL2 can activate the myeloid immune response. Notably, ANGPTL2 drove generation of immunostimulatory macrophages via the NF-κB pathway, accelerating CD4+ T helper 1 (Th1) cell activation. These findings overall provide novel insight into the complex mechanisms underlying ANGPTL2 anti-tumor function in cancer pathology.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: ANGPTL2 deficiency enhances CAC progression.
Fig. 2: ANGPTL2 deficiency decreases T cell immune responses.
Fig. 3: Angptl2-deficient mice show attenuated myeloid immune responses.
Fig. 4: ANGPTL2 in WT colon is expressed predominantly by intestinal myofibroblasts.
Fig. 5: ANGPTL2 promotes monocyte differentiation into Ly6Chigh macrophages via NF-κB signaling.
Fig. 6: ANGPTL2-mediated macrophage activation induces IFN-γ production by CD4+ T cells.
Fig. 7: Model proposing an anti-tumorigenic role of ANGPTL2 during injury-induced colorectal tumorigenesis.

Similar content being viewed by others

References

  1. Mantovani A, Allavena P, Sica A, Balkwill F. Cancer-related inflammation. Nature. 2008;454:436–44.

    Article  CAS  PubMed  Google Scholar 

  2. Kuraishy A, Karin M, Grivennikov SI. Tumor promotion via injury- and death-induced inflammation. Immunity. 2011;35:467.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. El–Serag HB, Rudolph KL. Hepatocellular carcinoma: epidemiology and molecular carcinogenesis. Gastroenterology. 2007;132:2557–76.

    Article  PubMed  CAS  Google Scholar 

  4. Uemura N, Okamoto S, Yamamoto S, Matsumura N, Yamaguchi S, Yamakido M, et al. Helicobacter pylori Infection and the Development of Gastric Cancer. N Engl J Med. 2001;345:784–9.

    Article  CAS  PubMed  Google Scholar 

  5. Saleh M, Trinchieri G. Innate immune mechanisms of colitis and colitis-associated colorectal cancer. Nat Rev Immunol. 2011;11:9–20.

    Article  CAS  PubMed  Google Scholar 

  6. Oike Y, Yasunaga K, Ito Y, Matsumoto S-I, Maekawa H, Morisada T, et al. Angiopoietin-related growth factor (AGF) promotes epidermal proliferation, remodeling, and regeneration. Proc Natl Acad Sci USA. 2003;100:9494–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Hato T, Tabata M, Oike Y. The role of angiopoietin-like proteins in angiogenesis and metabolism. Trends Cardiovasc Med. 2008;18:6–14.

    Article  CAS  PubMed  Google Scholar 

  8. Kubota Y, Oike Y, Satoh S, Tabata Y, Niikura Y, Morisada T, et al. Isolation and expression patterns of genes for three angiopoietin-like proteins, Angptl1, 2 and 6 in zebrafish. Gene Expr Patterns. 2005;5:679–85.

    Article  CAS  PubMed  Google Scholar 

  9. Kadomatsu T, Endo M, Miyata K, Oike Y. Diverse roles of ANGPTL2 in physiology and pathophysiology. Trends Endocrinol Metab. 2014;25:245–54.

    Article  CAS  PubMed  Google Scholar 

  10. Endo M, Nakano M, Kadomatsu T, Fukuhara S, Kuroda H, Mikami S, et al. Tumor cell-derived angiopoietin-like protein ANGPTL2 is a critical driver of metastasis. Cancer Res. 2012;72:1784–94.

    Article  CAS  PubMed  Google Scholar 

  11. Odagiri H, Kadomatsu T, Endo M, Masuda T, Morioka MS, Fukuhara S, et al. The secreted protein ANGPTL2 promotes metastasis of osteosarcoma cells through integrin 5 1, p38 MAPK, and matrix metalloproteinases. Sci Signal. 2014;7:ra7.

    Article  PubMed  CAS  Google Scholar 

  12. Horiguchi H, Endo M, Kawane K, Kadomatsu T, Terada K, Morinaga J, et al. ANGPTL2 expression in the intestinal stem cell niche controls epithelial regeneration and homeostasis. EMBO J. 2017;36:409–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Horiguchi H, Kadomatsu T, Kurahashi R, Hara C, Miyata K, Baba M, et al. Dual functions of angiopoietin-like protein 2 signaling in tumor progression and anti-tumor immunity. Genes Dev. 2019;33:1641–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Tay RE, Richardson EK, Toh HC. Revisiting the role of CD4+ T cells in cancer immunotherapy—new insights into old paradigms. Cancer Gene Ther. 2020;1–13, https://doi.org/10.1038/s41417-020-0183-x.

  15. Borst J, Ahrends T, Bąbała N, Melief CJM, Kastenmüller W. CD4+ T cell help in cancer immunology and immunotherapy. Nat Rev Immunol. 2018;18:635–47.

    Article  CAS  PubMed  Google Scholar 

  16. Kennedy R, Celis E. Multiple roles for CD4+ T cells in anti-tumor immune responses. Immunol Rev. 2008;222:129–44.

    Article  CAS  PubMed  Google Scholar 

  17. Gnjatic S, Atanackovict D, Jäger E, Matsuo M, Selvakumar A, Altorki NK, et al. Survey of naturally occurring CD4+ T cell responses against NY-ESO-1 in cancer patients: Correlation with antibody responses. Proc Natl Acad Sci USA. 2003;100:8862–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Wirtz S, Popp V, Kindermann M, Gerlach K, Weigmann B, Fichtner-Feigl S, et al. Chemically induced mouse models of acute and chronic intestinal inflammation. Nat Protoc. 2017;12:1295–309.

    Article  CAS  PubMed  Google Scholar 

  19. Okayasu I, Hatakeyama S, Yamada M, Ohkusa T, Inagaki Y, Nakaya R. A novel method in the induction of reliable experimental acute and chronic ulcerative colitis in mice. Gastroenterology. 1990;98:694–702.

    Article  CAS  PubMed  Google Scholar 

  20. Sheng J, Ruedl C, Karjalainen K. Most tissue-resident macrophages except microglia are derived from fetal hematopoietic stem cells. Immunity. 2015;43:382–93.

    Article  CAS  PubMed  Google Scholar 

  21. Soncin I, Sheng J, Chen Q, Foo S, Duan K, Lum J, et al. The tumour microenvironment creates a niche for the self-renewal of tumour-promoting macrophages in colon adenoma. Nat Commun. 2018; 9. https://doi.org/10.1038/s41467-018-02834-8.

  22. Zhang L, Li Z, Skrzypczynska KM, Fang Q, Zhang W, O’Brien SA, et al. Single-cell analyses inf mechanisms myeloid-target therapies colon cancer. Cell. 2020;181:442–.e29.

    Article  CAS  PubMed  Google Scholar 

  23. Tabata M, Kadomatsu T, Fukuhara S, Miyata K, Ito Y, Endo M, et al. Angiopoietin-like protein 2 promotes chronic adipose tissue inflammation and obesity-related systemic insulin resistance. Cell Metab. 2009;10:178–88.

    Article  CAS  PubMed  Google Scholar 

  24. Liu T, Zhang L, Joo D, Sun SC. NF-κB signaling in inflammation. Signal Transduct Target Ther. 2017; 2. https://doi.org/10.1038/sigtrans.2017.23.

  25. Trinchieri G. Interleukin-12 and the regulation of innate resistance and adaptive immunity. Nat Rev Immunol. 2003;3:133–46.

    Article  CAS  PubMed  Google Scholar 

  26. Rugtveit J, Brandtzaeg P, Halstensen TS, Fausa O, Scott H. Increased macrophage subset in inflammatory bowel disease: Apparent recruitment from peripheral blood monocytes. Gut. 1994;35:669–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Rugtveit J, Nilsen EM, Bakka A, Carlsen H, Brandtzaeg P, Scott H. Cytokine profiles differ in newly recruited and resident subsets of mucosal macrophages from inflammatory bowel disease. Gastroenterology. 1997;112:1493–505.

    Article  CAS  PubMed  Google Scholar 

  28. Tamoutounour S, Henri S, Lelouard H, de Bovis B, de Haar C, van der Woude CJ, et al. CD64 distinguishes macrophages from dendritic cells in the gut and reveals the Th1-inducing role of mesenteric lymph node macrophages during colitis. Eur J Immunol. 2012;42:3150–66.

    Article  CAS  PubMed  Google Scholar 

  29. Bain CC, Scott CL, Uronen-Hansson H, Gudjonsson S, Jansson O, Grip O, et al. Resident and pro-inflammatory macrophages in the colon represent alternative context-dependent fates of the same Ly6C hi monocyte precursors. Mucosal Immunol. 2013;6:498–510.

    Article  CAS  PubMed  Google Scholar 

  30. Bain CC, Mowat AM. Macrophages in intestinal homeostasis and inflammation. Immunol Rev. 2014;260:102–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. De Calisto J, Villablanca EJ, Mora JR. FcγRI (CD64): an identity card for intestinal macrophages. Eur J Immunol. 2012;42:3136–40.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Na YR, Stakenborg M, Seok SH, Matteoli G. Macrophages in intestinal inflammation and resolution: a potential therapeutic target in IBD. Nat Rev Gastroenterol Hepatol. 2019;16:531–43.

    Article  CAS  PubMed  Google Scholar 

  33. Biswas SK, Mantovani A. Macrophage plasticity and interaction with lymphocyte subsets: cancer as a paradigm. Nat Immunol. 2010;11:889–96.

    Article  CAS  PubMed  Google Scholar 

  34. Yugami M, Odagiri H, Endo M, Tsutsuki H, Fujii S, Kadomatsu T, et al. Mice deficient in angiopoietin-like protein 2 (Angptl2) gene show increased susceptibility to bacterial infection due to attenuated macrophage activity. J Biol Chem. 2016;291:18843–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Moynihan KD, Irvine DJ. Roles for innate immunity in combination immunotherapies. Cancer Res. 2017;77:5215–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Kather JN, Halama N. Harnessing the innate immune system and local immunological microenvironment to treat colorectal cancer. Br J Cancer. 2019;120:871–82.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Galdiero MR, Bianchi P, Grizzi F, Di Caro G, Basso G, Ponzetta A, et al. Occurrence and significance of tumor-Associated neutrophils in patients with colorectal cancer. Int J Cancer. 2016;139:446–56.

    Article  CAS  PubMed  Google Scholar 

  38. Aoi J, Endo M, Kadomatsu T, Miyata K, Nakano M, Horiguchi H, et al. Angiopoietin-like protein 2 is an important facilitator of inflammatory carcinogenesis and metastasis. Cancer Res. 2011;71:7502–12.

    Article  CAS  PubMed  Google Scholar 

  39. Masuda T, Endo M, Yamamoto Y, Odagiri H, Kadomatsu T, Nakamura T, et al. ANGPTL2 increases bone metastasis of breast cancer cells through enhancing CXCR4 signaling. Sci Rep. 2015;5:9170.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Horiguchi H, Endo M, Miyamoto Y, Sakamoto Y, Odagiri H, Masuda T, et al. Angiopoietin-like protein 2 renders colorectal cancer cells resistant to chemotherapy by activating spleen tyrosine kinase-phosphoinositide 3-kinase-dependent anti-apoptotic signaling. Cancer Sci. 2014;105:1550–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Osumi H, Horiguchi H, Kadomatsu T, Tashiro K, Morinaga J, Takahashi T, et al. Tumor cell-derived angiopoietin-like protein 2 establishes a preference for glycolytic metabolism in lung cancer cells. Cancer Sci. 2020;111:1241–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Kikuchi R, Tsuda H, Kozaki K-i, Kanai Y, Kasamatsu T, Sengoku K, et al. Frequent Inactivation of a Putative Tumor Suppressor, Angiopoietin-Like Protein 2, in Ovarian Cancer. Cancer Res. 2008;68:5067–75.

    Article  CAS  PubMed  Google Scholar 

  43. Netsirisawan P, Chokchaichamnankit D, Srisomsap C, Svasti J, Champattanachai V. Proteomic analysis reveals aberrant o-glcnacylation of extracellular proteins from breast cancer cell secretion. Cancer Genom Proteom. 2015;12:201–9.

    CAS  Google Scholar 

  44. Ho WL, Hsu WM, Huang MC, Kadomatsu K, Nakagawara A. Protein glycosylation in cancers and its potential therapeutic applications in neuroblastoma. J Hematol Oncol. 2016;9:1–15.

    Article  CAS  Google Scholar 

  45. Kim I, Moon SO, Koh KN, Kim H, Uhm CS, Kwak HJ, et al. Molecular cloning, expression, and characterization of angiopoietin-related protein. angiopoietin-related protein induces endothelial cell sprouting. J Biol Chem. 1999;274:26523–8.

    Article  CAS  PubMed  Google Scholar 

  46. Chung KY, Gore I, Fong L, Venook A, Beck SB, Dorazio P, et al. Phase II study of the anti-cytotoxic T-lymphocyte-associated antigen 4 monoclonal antibody, tremelimumab, in patients with refractory metastatic colorectal cancer. J Clin Oncol. 2010;28:3485–90.

    Article  CAS  PubMed  Google Scholar 

  47. Topalian SL, Hodi FS, Brahmer JR, Gettinger SN, Smith DC, McDermott DF, et al. Safety, activity, and immune correlates of anti–PD-1 antibody in cancer. N Engl J Med. 2012;366:2443–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Kuchiike D, Uto Y, Mukai H, Ishiyama N, Abe C, Tanaka D, et al. Degalactosylated/Desialylated human serum containing GcMAF induces macrophage phagocytic activity and in vivo antitumor activity. Anticancer Res. 2013;33:2881–6.

    CAS  PubMed  Google Scholar 

  49. Yanagita T, Murata Y, Tanaka D, Motegi S ichiro, Arai E, Daniwijaya EW, et al. Anti-SIRPα antibodies as a potential new tool for cancer immunotherapy. JCI Insight 2017;2. https://doi.org/10.1172/jci.insight.89140.

  50. Advani R, Flinn I, Popplewell L, Forero A, Bartlett NL, Ghosh N, et al. CD47 blockade by Hu5F9-G4 and rituximab in non-Hodgkin’s lymphoma. N Engl J Med. 2018;379:1711–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Weigmann B, Tubbe I, Seidel D, Nicolaev A, Becker C, Neurath MF. Isolation and subsequent analysis of murine lamina propria mononuclear cells from colonic tissue. Nat Protoc. 2007;2:2307–11.

    Article  CAS  PubMed  Google Scholar 

  52. Khalil H, Nie W, Edwards RA, Yoo J. Isolation of primary myofibroblasts from mouse and human colon tissue. J Vis Exp. 2013;12:1–6.

    Google Scholar 

Download references

Acknowledgements

We thank Kiyoka Tabu, Noriko Shirai, and Sayomi Iwaki for technical assistance. This work was supported by the Scientific Research Fund of the Ministry of Education, Culture, Sports, Science and Technology (MEXT) of Japan (grant 18K07236 to TK, grant 18K15246 to HH), the Core Research for Evolutional Science and Technology (CREST) program of the Japan Science and Technology Agency (JST) (grant 13417915 to YO), the CREST program of the Japan Agency for Medical Research and Development (AMED) (grant JP18gm0610007 to YO), and the Takeda Science Foundation (HH, TK).

Author information

Authors and Affiliations

Authors

Contributions

HH designed the study, performed and analyzed most of experiments, and wrote the paper. TK designed the study and wrote the paper. KM provided Angptl2 mutant mice. KT provided recombinant ANGPTL2 protein. MS and DT discussed the data. JM assisted with statistical analysis. TM designed and supervised the study, and wrote the paper. YO coordinated, designed, and supervised the study, and wrote the paper. All authors discussed the data and commented on the paper.

Corresponding authors

Correspondence to Tsuyoshi Kadomatsu or Yuichi Oike.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Horiguchi, H., Kadomatsu, T., Miyata, K. et al. Stroma-derived ANGPTL2 establishes an anti-tumor microenvironment during intestinal tumorigenesis. Oncogene 40, 55–67 (2021). https://doi.org/10.1038/s41388-020-01505-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-020-01505-7

This article is cited by

Search

Quick links