Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

PRRG4 promotes breast cancer metastasis through the recruitment of NEDD4 and downregulation of Robo1

Abstract

Metastasis is responsible for the death of most breast cancer patients. Robo1 has been implicated as a tumor suppressor for various cancers including breast cancer. However, it is not well understood how Robo1 expression is regulated during tumorigenesis. In this study, we uncovered that the transmembrane proline rich γ-carboxyglutamic acid protein 4 (PRRG4) promotes breast cancer metastasis by downregulating Robo1. Analysis of mRNA expression data in The Cancer Genome Atlas and immunohistochemistry assay on breast tumor samples showed that PRRG4 expression was higher in breast tumors than in normal breast tissues. Experiments with PRRG4 knockdown and overexpression revealed that PRRG4 promoted migration and invasion of breast cancer cells, and enhanced metastasis in an experimental metastasis model. Mechanistically, we found that PRRG4 via its LPSY and PPPY motifs recruited the E3 ubiquitin ligase NEDD4, which induced ubiquitination and degradation of Robo1, thus contributing to migration and invasion of breast cancer cells. In addition, PRRG4 interacted with and enhanced protein tyrosine kinase Src and FAK activation. Overall, our data support a model that PRRG4 via NEDD4 downregulates the Robo1, resulting in the activation of Src and FAK and promoting breast cancer metastasis. PRRG4 may be a novel target for treating metastatic breast cancer.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: PRRG4 expression is higher in breast tumors than in normal breast tissues.
Fig. 2: PRRG4 promotes migration and invasion of breast cancer cells.
Fig. 3: PRRG4 downregulates Robo1 by increasing Robo1 protein turnover in breast cancer cells.
Fig. 4: PRRG4 downregulates Robo1 by recruiting NEDD4 and promoting Robo1 ubiquitination in breast cancer cells.
Fig. 5: PRRG4 promotes migration and invasion of breast cancer cells through NEDD4 and downregulation of Robo1.
Fig. 6: PRRG4 promotes Src and FAK activation via downregulation of the Robo1.
Fig. 7: PRRG4 via its WW domain binding motif promotes breast cancer metastasis.
Fig. 8: A working model of PRRG4 promoting metastasis of breast cancer cells.

Similar content being viewed by others

References

  1. Fitzmaurice C, Abate D, Abbasi N, Abbastabar H, Abd-Allah F, Abdel-Rahman O, et al. Global, regional, and national cancer incidence, mortality, years of life lost, years lived with disability, and disability-adjusted life-years for 29 cancer groups, 1990 to 2017: a systematic analysis for the global burden of disease study. JAMA Oncol. 2019;5:1749–68.

    PubMed  PubMed Central  Google Scholar 

  2. Nayar U, Cohen O, Kapstad C, Cuoco MS, Waks AG, Wander SA, et al. Acquired HER2 mutations in ER(+) metastatic breast cancer confer resistance to estrogen receptor-directed therapies. Nat Genet. 2019;51:207–16.

    CAS  PubMed  Google Scholar 

  3. Waks AG, Winer EP. Breast cancer treatment: a review. JAMA. 2019;321:288–300.

    CAS  PubMed  Google Scholar 

  4. Kulman JD, Harris JE, Xie L, Davie EW. Identification of two novel transmembrane gamma-carboxyglutamic acid proteins expressed broadly in fetal and adult tissues. Proc Natl Acad Sci USA. 2001;98:1370–5.

    CAS  PubMed  Google Scholar 

  5. Kulman JD, Harris JE, Haldeman BA, Davie EW. Primary structure and tissue distribution of two novel proline-rich gamma-carboxyglutamic acid proteins. Proc Natl Acad Sci USA. 1997;94:9058–62.

    CAS  PubMed  Google Scholar 

  6. Yazicioglu MN, Monaldini L, Chu K, Khazi FR, Murphy SL, Huang H, et al. Cellular localization and characterization of cytosolic binding partners for Gla domain-containing proteins PRRG4 and PRRG2. J Biol Chem. 2013;288:25908–14.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Xu S, Han JC, Morales A, Menzie CM, Williams K, Fan YS. Characterization of 11p14-p12 deletion in WAGR syndrome by array CGH for identifying genes contributing to mental retardation and autism. Cytogenet Genome Res. 2008;122:181–7.

    CAS  PubMed  Google Scholar 

  8. Yamamoto T, Togawa M, Shimada S, Sangu N, Shimojima K, Okamoto N. Narrowing of the responsible region for severe developmental delay and autistic behaviors in WAGR syndrome down to 1.6 Mb including PAX6, WT1, and PRRG4. Am J Med Genet A. 2014;164A:634–8.

    PubMed  Google Scholar 

  9. Yip KT, Das PK, Suria D, Lim CR, Ng GH, Liew CC. A case-controlled validation study of a blood-based seven-gene biomarker panel for colorectal cancer in Malaysia. J Exp Clin Cancer Res. 2010;29:128.

    PubMed  PubMed Central  Google Scholar 

  10. Wang SZ, Ibrahim LA, Kim YJ, Gibson DA, Leung HC, Yuan W, et al. Slit/Robo signaling mediates spatial positioning of spiral ganglion neurons during development of cochlear innervation. J Neurosci. 2013;33:12242–54.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Whitford KL, Marillat V, Stein E, Goodman CS, Tessier-Lavigne M, Chedotal A, et al. Regulation of cortical dendrite development by Slit-Robo interactions. Neuron. 2002;33:47–61.

    CAS  PubMed  Google Scholar 

  12. Blockus H, Chedotal A. The multifaceted roles of Slits and Robos in cortical circuits: from proliferation to axon guidance and neurological diseases. Curr Opin Neurobiol. 2014;27:82–8.

    CAS  PubMed  Google Scholar 

  13. Blockus H, Chedotal A. Slit-Robo signaling. Development. 2016;143:3037–44.

    CAS  PubMed  Google Scholar 

  14. Dickinson RE, Duncan WC. The SLIT-ROBO pathway: a regulator of cell function with implications for the reproductive system. Reproduction. 2010;139:697–704.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Ballard MS, Hinck L. A roundabout way to cancer. Adv Cancer Res. 2012;114:187–235.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Gara RK, Kumari S, Ganju A, Yallapu MM, Jaggi M, Chauhan SC. Slit/Robo pathway: a promising therapeutic target for cancer. Drug Disco Today. 2015;20:156–64.

    CAS  Google Scholar 

  17. Dallol A, Forgacs E, Martinez A, Sekido Y, Walker R, Kishida T, et al. Tumour specific promoter region methylation of the human homologue of the Drosophila Roundabout gene DUTT1 (ROBO1) in human cancers. Oncogene. 2002;21:3020–8.

    CAS  PubMed  Google Scholar 

  18. Schmid BC, Rezniczek GA, Fabjani G, Yoneda T, Leodolter S, Zeillinger R. The neuronal guidance cue Slit2 induces targeted migration and may play a role in brain metastasis of breast cancer cells. Breast Cancer Res Treat. 2007;106:333–42.

    PubMed  Google Scholar 

  19. Qin F, Zhang H, Ma L, Liu X, Dai K, Li W, et al. Low expression of Slit2 and Robo1 is associated with poor prognosis and brain-specific metastasis of breast cancer patients. Sci Rep. 2015;5:14430.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Bhattacharya R, Mukherjee N, Dasgupta H, Islam MS, Alam N, Roy A, et al. Frequent alterations of SLIT2-ROBO1-CDC42 signalling pathway in breast cancer: clinicopathological correlation. J Genet. 2016;95:551–63.

    CAS  PubMed  Google Scholar 

  21. Wang J, Wang L, Liu FF, Ma YJ, Fu L, Li WL, et al. [Robo1 expression in breast cancer and its relationship to brain metastasis]. Zhonghua Zhong Liu Za Zhi. 2011;33:447–51.

    CAS  PubMed  Google Scholar 

  22. Chang PH, Hwang-Verslues WW, Chang YC, Chen CC, Hsiao M, Jeng YM, et al. Activation of Robo1 signaling of breast cancer cells by Slit2 from stromal fibroblast restrains tumorigenesis via blocking PI3K/Akt/beta-catenin pathway. Cancer Res. 2012;72:4652–61.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Yuasa-Kawada J, Kinoshita-Kawada M, Rao Y, Wu JY. Deubiquitinating enzyme USP33/VDU1 is required for Slit signaling in inhibiting breast cancer cell migration. Proc Natl Acad Sci USA. 2009;106:14530–5.

    CAS  PubMed  Google Scholar 

  24. Marlow R, Strickland P, Lee JS, Wu X, Pebenito M, Binnewies M, et al. SLITs suppress tumor growth in vivo by silencing Sdf1/Cxcr4 within breast epithelium. Cancer Res. 2008;68:7819–27.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Justice ED, Barnum SJ, Kidd T. The WAGR syndrome gene PRRG4 is a functional homologue of the commissureless axon guidance gene. PLoS Genet. 2017;13:e1006865.

    PubMed  PubMed Central  Google Scholar 

  26. Keleman K, Rajagopalan S, Cleppien D, Teis D, Paiha K, Huber LA, et al. Comm sorts robo to control axon guidance at the Drosophila midline. Cell. 2002;110:415–27.

    CAS  PubMed  Google Scholar 

  27. Boase NA, Kumar S. NEDD4: the founding member of a family of ubiquitin-protein ligases. Gene. 2015;557:113–22.

    CAS  PubMed  Google Scholar 

  28. Zhao X, Guan JL. Focal adhesion kinase and its signaling pathways in cell migration and angiogenesis. Adv Drug Deliv Rev. 2011;63:610–5.

    CAS  PubMed  Google Scholar 

  29. Juarez-Cruz JC, Zuniga-Eulogio MD, Olea-Flores M, Castaneda-Saucedo E, Mendoza-Catalan MA, Ortuno-Pineda C, et al. Leptin induces cell migration and invasion in a FAK-Src-dependent manner in breast cancer cells. Endocr Connect. 2019;8:1539–52.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Ke H, Zhao L, Zhang H, Feng X, Xu H, Hao J, et al. Loss of TDP43 inhibits progression of triple-negative breast cancer in coordination with SRSF3. Proc Natl Acad Sci USA. 2018;115:E3426–35.

    CAS  PubMed  Google Scholar 

  31. Nieto MA. The ins and outs of the epithelial to mesenchymal transition in health and disease. Annu Rev Cell Dev Biol. 2011;27:347–76.

    CAS  PubMed  Google Scholar 

  32. Lu W, Kang Y. Epithelial-mesenchymal plasticity in cancer progression and metastasis. Dev Cell. 2019;49:361–74.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Yang N, Morrison CD, Liu P, Miecznikowski J, Bshara W, Han S, et al. TAZ induces growth factor-independent proliferation through activation of EGFR ligand amphiregulin. Cell Cycle. 2012;11:2922–30.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Diepenbruck M, Waldmeier L, Ivanek R, Berninger P, Arnold P, van Nimwegen E, et al. Tead2 expression levels control the subcellular distribution of Yap and Taz, zyxin expression and epithelial-mesenchymal transition. J Cell Sci. 2014;127:1523–36.

    CAS  PubMed  Google Scholar 

  35. Gilestro GF. Redundant mechanisms for regulation of midline crossing in Drosophila. PLoS ONE. 2008;3:e3798.

    PubMed  PubMed Central  Google Scholar 

  36. Myat A, Henry P, McCabe V, Flintoft L, Rotin D, Tear G. Drosophila Nedd4, a ubiquitin ligase, is recruited by Commissureless to control cell surface levels of the roundabout receptor. Neuron. 2002;35:447–59.

    CAS  PubMed  Google Scholar 

  37. Gorla M, Santiago C, Chaudhari K, Layman AAK, Oliver PM, Bashaw GJ. Ndfip proteins target robo receptors for degradation and allow commissural axons to cross the midline in the developing spinal cord. Cell Rep. 2019;26:3298–312.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Xia Y, Wang L, Xu Z, Kong R, Wang F, Yin K, et al. Reduced USP33 expression in gastric cancer decreases inhibitory effects of Slit2-Robo1 signalling on cell migration and EMT. Cell Prolif. 2019;52:e12606.

    PubMed  PubMed Central  Google Scholar 

  39. Nakatsukasa K, Huyer G, Michaelis S, Brodsky JL. Dissecting the ER-associated degradation of a misfolded polytopic membrane protein. Cell. 2008;132:101–12.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Kanelis V, Bruce MC, Skrynnikov NR, Rotin D, Forman-Kay JD. Structural determinants for high-affinity binding in a Nedd4 WW3* domain-Comm PY motif complex. Structure. 2006;14:543–53.

    CAS  PubMed  Google Scholar 

  41. Pluskey S, Wandless TJ, Walsh CT, Shoelson SE. Potent stimulation of SH-PTP2 phosphatase activity by simultaneous occupancy of both SH2 domains. J Biol Chem. 1995;270:2897–900.

    PubMed  Google Scholar 

  42. Ottinger EA, Botfield MC, Shoelson SE. Tandem SH2 domains confer high specificity in tyrosine kinase signaling. J Biol Chem. 1998;273:729–35.

    CAS  PubMed  Google Scholar 

  43. Naser R, Aldehaiman A, Diaz-Galicia E, Arold ST. Endogenous control mechanisms of FAK and PYK2 and their relevance to cancer development. Cancers. 2018;10:196.

    PubMed Central  Google Scholar 

  44. Summy JM, Gallick GE. Src family kinases in tumor progression and metastasis. Cancer Metastasis Rev. 2003;22:337–58.

    CAS  PubMed  Google Scholar 

  45. Patel A, Sabbineni H, Clarke A, Somanath PR. Novel roles of Src in cancer cell epithelial-to-mesenchymal transition, vascular permeability, microinvasion and metastasis. Life Sci. 2016;157:52–61.

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Ngan E, Stoletov K, Smith HW, Common J, Muller WJ, Lewis JD, et al. LPP is a Src substrate required for invadopodia formation and efficient breast cancer lung metastasis. Nat Commun. 2017;8:15059.

    PubMed  PubMed Central  Google Scholar 

  47. Calalb MB, Polte TR, Hanks SK. Tyrosine phosphorylation of focal adhesion kinase at sites in the catalytic domain regulates kinase activity: a role for Src family kinases. Mol Cell Biol. 1995;15:954–63.

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Wong K, Ren XR, Huang YZ, Xie Y, Liu G, Saito H, et al. Signal transduction in neuronal migration: roles of GTPase activating proteins and the small GTPase Cdc42 in the Slit-Robo pathway. Cell. 2001;107:209–21.

    CAS  PubMed  Google Scholar 

  49. Kong R, Yi F, Wen P, Liu J, Chen X, Ren J, et al. Myo9b is a key player in SLIT/ROBO-mediated lung tumor suppression. J Clin Invest. 2015;125:4407–20.

    PubMed  PubMed Central  Google Scholar 

  50. Wallace AG, Raduwan H, Carlet J, Soto MC. The RhoGAP HUM-7/Myo9 integrates signals to modulate RHO-1/RhoA during embryonic morphogenesis in Caenorhabditis elegans. Development. 2018;145:dev168724.

    PubMed  PubMed Central  Google Scholar 

  51. Yuan T, Ma H, Du Z, Xiong X, Gao H, Fang Z, et al. Shp1 positively regulates EGFR signaling by controlling EGFR protein expression in mammary epithelial cells. Biochem Biophys Res Commun. 2017;488:439–44.

    CAS  PubMed  Google Scholar 

  52. Fang Z, Li T, Chen W, Wu D, Qin Y, Liu M, et al. Gab2 promotes cancer stem cell like properties and metastatic growth of ovarian cancer via downregulation of miR-200c. Exp Cell Res. 2019;382:111462.

    CAS  PubMed  Google Scholar 

  53. He L, Du Z, Xiong X, Ma H, Zhu Z, Gao H, et al. Targeting androgen receptor in treating HER2 positive breast cancer. Sci Rep. 2017;7:14584.

    PubMed  PubMed Central  Google Scholar 

  54. Timms JF, Carlberg K, Gu H, Chen H, Kamatkar S, Nadler MJ, et al. Identification of major binding proteins and substrates for the SH2-containing protein tyrosine phosphatase SHP-1 in macrophages. Mol Cell Biol. 1998;18:3838–50.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Dr. Weibao Jiao (Kunming Institute of Zoology, Academia Sinica) for kindly providing us the MDA-MB-231-luciferase cells, and Helen Gu (Department of Economics, Massachusetts Institute of Technology) for proofreading the paper. This work was supported by grants (81972463 and 81772819) from the National Natural Science Foundation of China, and grants (LY20C080001 and LY18H080003) from Natural Science Foundation of Zhejiang Province, China, and was supported in part by Wenzhou Medical University Startup funds and the Key Discipline of Zhejiang Province in Medical Technology (First Class, Category A).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jianxin Lyu, Hongzhi Li or Haihua Gu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, L., Qin, Y., Wu, G. et al. PRRG4 promotes breast cancer metastasis through the recruitment of NEDD4 and downregulation of Robo1. Oncogene 39, 7196–7208 (2020). https://doi.org/10.1038/s41388-020-01494-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-020-01494-7

This article is cited by

Search

Quick links