Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Ablation of neuropilin-1 improves the therapeutic response in conventional drug-resistant glioblastoma multiforme

Abstract

Glioblastoma multiforme (GBM) is a highly proliferative and locally invasive cancer with poor prognosis and a high recurrence rate. Although anti-VEGF (vascular endothelial growth factor) therapy offers short-term benefit to GBM patients, this approach fails as the tumor develops into a more invasive and drug-resistant phenotype and ultimately recurs. Recently, both glioma stemlike cells (GSCs) and brain tumor–initiating cells (BTICs) have been implicated in GBM recurrence and its resistance to therapy. We observed that patient-derived GBM cells expressing shRNAs of VEGF or neuropilin-1 (NRP-1) attenuate cancer stem cell markers, inhibit the tumor-initiating cell’s neurosphere-forming capacity, and migration. Furthermore, both VEGF and NRP-1 knockdown inhibit the growth of patient-derived GBM xenografts in both zebrafish and mouse models. Interestingly, NRP-1–depleted patient-derived GBM xenografts substantially prolonged survival in mice compared to that of VEGF depletion. Our results also demonstrate that NRP-1 ablation of patient-derived GBM cells improves the sensitivity of TMZ and enhances the overall survival of the respective tumor-bearing mice. This improved outcome may provide insight into the inhibition of GBM progression and effective treatment strategies by targeting NRP-1 in addition to chemotherapy and radiotherapy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: GBM1A and GBM22 Express Stem Cell Markers and GBM-associated Genes.
Fig. 2: VEGF and NRP-1 Knockdown in GBM Cells.
Fig. 3: Abrogation of VEGF or NRP-1 Inhibits GBM Cell Migration and Neurosphere Formation and Enhances Animal Survival in Mice Xenograft.
Fig. 4: NRP-1 Knockdown has a Prolonged Effect on Tumor Inhibition.
Fig. 5: Abrogation of VEGF or NRP-1 Inhibits Tumor Growth in Zebrafish.
Fig. 6: Effect of VEGF or NRP-1 Knockdown on Chemotherapy and Animal Survival in Mice Xenograft.

Similar content being viewed by others

References

  1. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2019. CA Cancer J Clin. 2019;69:7–34.

    Article  PubMed  Google Scholar 

  2. Stupp R, Hegi ME, Mason WP, van den Bent MJ, Taphoorn MJ, Janzer RC, et al. Effects of radiotherapy with concomitant and adjuvant temozolomide versus radiotherapy alone on survival in glioblastoma in a randomised phase III study: 5-year analysis of the EORTC-NCIC trial. Lancet Oncol. 2009;10:459–466.

    Article  CAS  PubMed  Google Scholar 

  3. Andaloussi-Saghir K, Oukabli M, El Marjany M, Sifat H, Hadadi K, Mansouri H. Secondary gliosarcoma after the treatment of primary glioblastoma multiforme. North Am J Med Sci. 2011;3:527–530.

    Article  Google Scholar 

  4. Holland EC. Glioblastoma multiforme: the terminator. Proc Natl Acad Sci. 2000;97:6242.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Chaichana KL, Chaichana KK, Olivi A, Weingart JD, Bennett R, Brem H, et al. Surgical outcomes for older patients with glioblastoma multiforme: preoperative factors associated with decreased survival. Clin Artic J Neurosurg. 2011;114:587–594.

    Article  Google Scholar 

  6. Chaichana KL, Jusue-Torres I, Navarro-Ramirez R, Raza SM, Pascual-Gallego M, Ibrahim A, et al. Establishing percent resection and residual volume thresholds affecting survival and recurrence for patients with newly diagnosed intracranial glioblastoma. Neuro Oncol. 2014;16:113–122.

    Article  PubMed  Google Scholar 

  7. Ostrom QT, Gittleman H, Liao P, Vecchione-Koval T, Wolinsky Y, Kruchko C, et al. CBTRUS statistical report: primary brain and other central nervous system tumors diagnosed in the United States in 2010-2014. Neuro-Oncol. 2017;19:v1–v88.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Seymour T, Nowak A, Kakulas F. Targeting aggressive cancer stem cells in glioblastoma. Front Oncol. 2015;5:159–159.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Visvader JE, Lindeman GJ. Cancer stem cells in solid tumours: accumulating evidence and unresolved questions. Nat Rev Cancer. 2008;8:755–768.

    Article  CAS  PubMed  Google Scholar 

  10. Lee J, Kotliarova S, Kotliarov Y, Li A, Su Q, Donin NM, et al. Tumor stem cells derived from glioblastomas cultured in bFGF and EGF more closely mirror the phenotype and genotype of primary tumors than do serum-cultured cell lines. Cancer Cell. 2006;9:391–403.

    Article  CAS  PubMed  Google Scholar 

  11. Yuan X, Curtin J, Xiong Y, Liu G, Waschsmann-Hogiu S, Farkas DL, et al. Isolation of cancer stem cells from adult glioblastoma multiforme. Oncogene. 2004;23:9392–9400.

    Article  CAS  PubMed  Google Scholar 

  12. Singh SK, Clarke ID, Terasaki M, Bonn VE, Hawkins C, Squire J, et al. Identification of a cancer stem cell in human brain tumors. Cancer Res. 2003;63:5821–5828.

    CAS  PubMed  Google Scholar 

  13. Bao S, Wu Q, McLendon RE, Hao Y, Shi Q, Hjelmeland AB, et al. Glioma stem cells promote radioresistance by preferential activation of the DNA damage response. Nature. 2006;444:756–760.

    Article  CAS  PubMed  Google Scholar 

  14. Lobo NA, Shimono Y, Qian D, Clarke MF. The biology of cancer stem cells. Annu Rev Cell Dev Biol. 2007;23:675–699.

    Article  CAS  PubMed  Google Scholar 

  15. Galli R, Binda E, Orfanelli U, Cipelletti B, Gritti A, De Vitis S, et al. Isolation and characterization of tumorigenic, stem-like neural precursors from human glioblastoma. Cancer Res. 2004;64:7011–7021.

    Article  CAS  PubMed  Google Scholar 

  16. Kitange GJ, Mladek AC, Carlson BL, Schroeder MA, Pokorny JL, Cen L, et al. Inhibition of histone deacetylation potentiates the evolution of acquired temozolomide resistance linked to MGMT upregulation in glioblastoma xenografts. Clin Cancer Res. 2012;18:4070–4079.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Tilghman J, Wu H, Sang Y, Shi X, Guerrero-Cazares H, Quinones-Hinojosa A, et al. HMMR maintains the stemness and tumorigenicity of glioblastoma stem-like cells. Cancer Res. 2014;74:3168–3179.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Ferrara N. Role of vascular endothelial growth factor in physiologic and pathologic angiogenesis: therapeutic implications. Semin Oncol. 2002;29:10–14.

    Article  CAS  PubMed  Google Scholar 

  19. Cao YEG, Wang E, Pal K, Dutta SK, Bar-Sagi D, et al. VEGF exerts an angiogenesis-independent function in cancer cells to promote their malignant progression. Cancer Res. 2012;72:3912–3918.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Chung AS, Ferrara N. Developmental and pathological angiogenesis. Annu Rev Cell Dev Biol. 2011;27:563–584.

    Article  CAS  PubMed  Google Scholar 

  21. Mukhopadhyay D, Datta K. Multiple regulatory pathways of vascular permeability factor/vascular endothelial growth factor (VPF/VEGF) expression in tumors. Semin Cancer Biol. 2004;14:123–130.

    Article  CAS  PubMed  Google Scholar 

  22. Chen W, He D, Li Z, Zhang X, Pan D, Chen G. Overexpression of vascular endothelial growth factor indicates poor outcomes of glioma: a systematic review and meta-analysis. Int J Clin Exp Med. 2015;8:8709–8719.

    PubMed  PubMed Central  Google Scholar 

  23. Chaudhry IH, O’Donovan DG, Brenchley PE, Reid H, Roberts IS. Vascular endothelial growth factor expression correlates with tumour grade and vascularity in gliomas. Histopathology. 2001;39:409–415.

    Article  CAS  PubMed  Google Scholar 

  24. Gamble JT, Reed-Harris Y, Barton CL, La Du J, Tanguay R, Greenwood JA. Quantification of glioblastoma progression in zebrafish xenografts: adhesion to laminin alpha 5 promotes glioblastoma microtumor formation and inhibits cell invasion. Biochem Biophys Res Commun. 2018;506:833–839.

    Article  CAS  PubMed  Google Scholar 

  25. Xu C, Wu X, Zhu J. VEGF promotes proliferation of human glioblastoma multiforme stem-like cells through VEGF receptor 2. Sci World J. 2013;2013:417413.

    Google Scholar 

  26. Hamerlik P, Lathia JD, Rasmussen R, Wu Q, Bartkova J, Lee M, et al. Autocrine VEGF-VEGFR2-Neuropilin-1 signaling promotes glioma stem-like cell viability and tumor growth. J Exp Med. 2012;209:507–520.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Treps L, Perret R, Edmond S, Ricard D, Gavard J. Glioblastoma stem-like cells secrete the pro-angiogenic VEGF-A factor in extracellular vesicles. J Extracell Vesicles. 2017;6:1359479–1359479.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Lu KV, Chang JP, Parachoniak CA, Pandika MM, Aghi MK, Meyronet D, et al. VEGF inhibits tumor cell invasion and mesenchymal transition through a MET/VEGFR2 complex. Cancer Cell. 2012;22:21–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Zhao D, Pan C, Sun J, Gilbert C, Drews-Elger K, Azzam DJ, et al. VEGF drives cancer-initiating stem cells through VEGFR-2/Stat3 signaling to upregulate Myc and Sox2. Oncogene. 2015;34:3107–3119.

    Article  CAS  PubMed  Google Scholar 

  30. Oka N, Soeda A, Inagaki A, Onodera M, Maruyama H, Hara A, et al. VEGF promotes tumorigenesis and angiogenesis of human glioblastoma stem cells. Biochem Biophys Res Commun. 2007;360:553–559.

    Article  CAS  PubMed  Google Scholar 

  31. Bergers G, Hanahan D. Modes of resistance to anti-angiogenic therapy. Nat Rev Cancer. 2008;8:592–603.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Soker S, Miao HQ, Nomi M, Takashima S, Klagsbrun M. VEGF165 mediates formation of complexes containing VEGFR-2 and neuropilin-1 that enhance VEGF165-receptor binding. J Cell Biochem. 2002;85:357–368.

    Article  CAS  PubMed  Google Scholar 

  33. Tomida C, Yamagishi N, Nagano H, Uchida T, Ohno A, Hirasaka K, et al. VEGF pathway-targeting drugs induce evasive adaptation by activation of neuropilin-1/cMet in colon cancer cells. Int J Oncol. 2018;52:1350–1362.

    CAS  PubMed  Google Scholar 

  34. Hu B, Guo P, Bar-Joseph I, Imanishi Y, Jarzynka MJ, Bogler O, et al. Neuropilin-1 promotes human glioma progression through potentiating the activity of the HGF/SF autocrine pathway. Oncogene. 2007;26:5577–5586.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Gong C, Valduga J, Chateau A, Richard M, Pellegrini-Moise N, Barberi-Heyob M, et al. Stimulation of medulloblastoma stem cells differentiation by a peptidomimetic targeting neuropilin-1. Oncotarget. 2018;9:15312–15325.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Mercurio AM. VEGF/Neuropilin signaling in cancer stem cells. Int J Mol Sci. 2019;20:490.

  37. Peng K, Bai Y, Zhu Q, Hu B, Xu Y. Targeting VEGF–neuropilin interactions: a promising antitumor strategy. Drug Discov Today. 2019;24:656–664.

    Article  CAS  PubMed  Google Scholar 

  38. Wang P, Wan W-w, Xiong S-L, Feng H, Wu N. Cancer stem-like cells can be induced through dedifferentiation under hypoxic conditions in glioma, hepatoma and lung cancer. Cell Death. Discov (Artic). 2017;3:16105.

    Google Scholar 

  39. Han J, Alvarez-Breckenridge CA, Wang QE, Yu J. TGF-beta signaling and its targeting for glioma treatment. Am J cancer Res. 2015;5:945–955.

    PubMed  PubMed Central  Google Scholar 

  40. Ikushima H, Todo T, Ino Y, Takahashi M, Miyazawa K, Miyazono K. Autocrine TGF-beta signaling maintains tumorigenicity of glioma-initiating cells through Sry-related HMG-box factors. Cell Stem Cell. 2009;5:504–514.

    Article  CAS  PubMed  Google Scholar 

  41. Beck B, Driessens G, Goossens S, Youssef KK, Kuchnio A, Caauwe A, et al. A vascular niche and a VEGF–Nrp1 loop regulate the initiation and stemness of skin tumours. Nature. 2011;478:399.

    Article  CAS  PubMed  Google Scholar 

  42. Grun D, Adhikary G, Eckert RL. VEGF-A acts via neuropilin-1 to enhance epidermal cancer stem cell survival and formation of aggressive and highly vascularized tumors. Oncogene (Original Artic). 2016;35:4379.

    Article  CAS  Google Scholar 

  43. Dirkse A, Golebiewska A, Buder T, Nazarov PV, Muller A, Poovathingal S, et al. Stem cell-associated heterogeneity in Glioblastoma results from intrinsic tumor plasticity shaped by the microenvironment. Nat Commun. 2019;10:1787.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Song WS, Yang YP, Huang CS, Lu KH, Liu WH, Wu WW, et al. Sox2, a stemness gene, regulates tumor-initiating and drug-resistant properties in CD133-positive glioblastoma stem cells. J Chin Med Assoc. 2016;79:538–545.

    Article  PubMed  Google Scholar 

  45. Hattermann K, Fluh C, Engel D, Mehdorn HM, Synowitz M, Mentlein R, et al. Stem cell markers in glioma progression and recurrence. Int J Oncol. 2016;49:1899–1910.

    Article  CAS  PubMed  Google Scholar 

  46. Cao Y, Wang L, Nandy D, Zhang Y, Basu A, Radisky D, et al. Neuropilin-1 Upholds Dedifferentiation and Propagation Phenotypes of Renal Cell Carcinoma Cells by Activating Akt and Sonic Hedgehog Axes. Cancer Res. 2008;68:8667.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Kim YJ, Jung K, Baek DS, Hong SS, Kim YS. Co-targeting of EGF receptor and neuropilin-1 overcomes cetuximab resistance in pancreatic ductal adenocarcinoma with integrin beta1-driven Src-Akt bypass signaling. Oncogene. 2017;36:2543–2552.

    Article  CAS  PubMed  Google Scholar 

  48. Kitange GJ, Mladek AC, Carlson BL, Schroeder MA, Pokorny JL, Cen L, et al. Inhibition of histone deacetylation potentiates the evolution of acquired temozolomide resistance linked to MGMT upregulation in glioblastoma xenografts. Clin Cancer Res. 2012;18:4070.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Hou H, Sun D, Zhang X. The role of MDM2 amplification and overexpression in therapeutic resistance of malignant tumors. Cancer Cell Int. 2019;19:216–216.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Her NG, Oh JW, Oh YJ, Han S, Cho HJ, Lee Y, et al. Potent effect of the MDM2 inhibitor AMG232 on suppression of glioblastoma stem cells. Cell death Dis. 2018;9:792.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. McCarty JH. Glioblastoma Resistance to Anti-VEGF Therapy: has the Challenge Been MET? Clin Cancer Res. 2013;19:1631.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Kwiatkowski SC, Guerrero PA, Hirota S, Chen Z, Morales JE, Aghi M, et al. Neuropilin-1 modulates TGFbeta signaling to drive glioblastoma growth and recurrence after anti-angiogenic therapy. PLoS ONE. 2017;12:e0185065.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. An Z, Aksoy O, Zheng T, Fan Q-W, Weiss WA. Epidermal growth factor receptor and EGFRvIII in glioblastoma: signaling pathways and targeted therapies. Oncogene. 2018;37:1561–1575.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Maire CL, Ligon KL. Molecular pathologic diagnosis of epidermal growth factor receptor. Neuro-Oncol. 2014;16:viii1–viii6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Petterson SA, Dahlrot RH, Hermansen SK, KAM S, Gundesen MT, Wohlleben H, et al. High levels of c-Met is associated with poor prognosis in glioblastoma. J Neuro-Oncol. 2015;122:517–527.

    Article  CAS  Google Scholar 

  56. Kwak Y, Kim S-I, Park C-K, Paek SH, Lee S-T, Park S-H. C-MET overexpression and amplification in gliomas. Int J Clin Exp Pathol. 2015;8:14932–14938.

    PubMed  PubMed Central  Google Scholar 

  57. Cantanhede IG, de Oliveira JRM. PDGF family expression in glioblastoma multiforme: data compilation from ivy glioblastoma atlas project database. Sci Rep. 2017;7:15271.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Liu T, Ma W, Xu H, Huang M, Zhang D, He Z, et al. PDGF-mediated mesenchymal transformation renders endothelial resistance to anti-VEGF treatment in glioblastoma. Nature. Communications. 2018;9:3439.

    Google Scholar 

  59. Noh M-G, Oh S-J, Ahn E-J, Kim Y-J, Jung T-Y, Jung S, et al. Prognostic significance of E-cadherin and N-cadherin expression in Gliomas. BMC Cancer. 2017;17:583–583.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Péglion F, Etienne-Manneville S. N-cadherin expression level as a critical indicator of invasion in non-epithelial tumors. Cell Adh Migr. 2012;6:327–332.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Zhao J, Zhang L, Dong X, Liu L, Huo L, Chen H. High expression of vimentin is associated with progression and a poor outcome in glioblastoma. Appl Immunohistochem Mol Morphol. 2018;26:337–344.

    Article  CAS  PubMed  Google Scholar 

  62. Rizzolio S, Cagnoni G, Battistini C, Bonelli S, Isella C, Van Ginderachter JA, et al. Neuropilin-1 upregulation elicits adaptive resistance to oncogene-targeted therapies. J Clin Investig. 2018;128:3976–3990.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Ruffini F, Levati L, Graziani G, Caporali S, Atzori MG, D’Atri S, et al. Platelet-derived growth factor-C promotes human melanoma aggressiveness through activation of neuropilin-1. Oncotarget. 2017;8:66833–66848.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank Dr Leonard Zon, Children’s Hospital, Boston, Massachusetts, for providing the Casper zebrafish strain, and Dr Ying Wang, Mayo Clinic, Jacksonville, for assistance with lentiviral preparation. The work was supported by the NIH Grant to DM R01CA 78383, RO1HL140411, R01CA150190, Florida Department of Health Cancer Research Chair Fund Florida #3 J. AQH was supported by the Mayo Clinic Professorship and a Clinician Investigator award, the Florida Department of Health Cancer Research Chair Fund, and the NIH (R43CA221490, R01CA200399, R01CA195503, and R01CA216855).

Author information

Authors and Affiliations

Authors

Contributions

Conception: DM Study design: RSA, SKM, RSE, AQH, DM. Development of methodology: RSA, SKM, FW, DM. Acquisition of data: RSA, SKM, FW, VSM, YG, EW. Analysis and interpretation of data: RSA, SKM, FW, VSM, AQH, DM. Writing the paper: RSA, SKM. Administrative, technical, or material support; JNS and SKD. Study supervision: DM and AQH.

Corresponding authors

Correspondence to Alfredo Quiñones-Hinojosa or Debabrata Mukhopadhyay.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Angom, R.S., Mondal, S.K., Wang, F. et al. Ablation of neuropilin-1 improves the therapeutic response in conventional drug-resistant glioblastoma multiforme. Oncogene 39, 7114–7126 (2020). https://doi.org/10.1038/s41388-020-01462-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-020-01462-1

This article is cited by

Search

Quick links