Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

NORE1A directs apoptotic switch of TNF signaling through reciprocal modulation of ITCH-mediated destruction of TNFRI and BAX


NORE1A (RASSF5) is a tumor suppressor of the Ras-association domain family (RASSF) that is commonly inactivated in multiple human cancers. However, the molecular mechanism underlying its growth inhibition function remains largely undefined. Here we report that NORE1A antagonizes tumor necrosis factor receptor I (TNFRI) through the assembly of ITCH-mediated destruction complex to suppress TNF-NF-κB signaling and tumorigenesis. Moreover, NORE1A is identified as a transcription target of NF-κB, which directs an apoptotic switch of TNF effect by blocking ITCH interaction with and ubiquitination of BAX. Mechanistically, NORE1A binds directly to TNFRI and ITCH via the C1 and PPXY domains, respectively to facilitate the formation of ITCH-mediated destruction complex followed by ubiquitination-mediated lysosomal degradation of TNFRI. Through this function, NORE1A suppresses TNF-induced NF-κB-mediated transcription of pro-inflammatory and tumor-promoting genes, epithelial-to-mesenchymal transition, invasion and migration of tumor cells, and also debilitates tumor cell activation of macrophage and fibroblast. While NORE1A suppresses TNF receptor-mediated apoptosis, it activates TNF-induced apoptosis through BAX activation by protecting BAX from ITCH binding and ubiquitination. Cytotoxic response to TNF is substantially attenuated in NORE1A-depleted cells and tumors, and NORE1A-induced tumor regression is highly impeded in BAX-depleted tumors. An inverse correlation is shown between NORE1A and TNFRI expression in both cancer cell lines and primary tumors, and NORE1A effect on survival of cancer patients is strongly associated with expression status of ITCH. Collectively, this study uncovers that NORE1A directs a substrate switch of ITCH favoring TNFRI over BAX to terminate TNF signaling and accelerate apoptosis, illuminating the mechanistic consequence of NORE1A inactivation in tumorigenesis.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: NORE1A suppresses TNF-driven tumor cell malignancy.
Fig. 2: NORE1A stimulates lysosomal degradation of TNFRI.
Fig. 3: NORE1A interacts with TNFRI.
Fig. 4: NORE1A promotes ITCH-mediated TNFRI ubiquitination.
Fig. 5: NORE1A stimulates TNF-induced apoptosis.
Fig. 6: NORE1A activates BAX to promote TNF-induced apoptosis.
Fig. 7: NORE1A inactivation disrupts TNF-induced BAX-mediated tumor regression.
Fig. 8: Schematic representation of NORE1A role as a molecular switch in TNF-mediated cell-fate decisions.


  1. 1.

    Vos MD, Martinez A, Ellis CA, Vallecorsa T, Clark GJ. The pro-apoptotic RAS effector Nore1 may serve as a RAS-regulated tumor suppressor in the lung. J Biol Chem. 2003;278:21938–43.

    CAS  PubMed  Google Scholar 

  2. 2.

    Hesson L, Dallol A, Minna JD, Maher ER, Latif F. NORE1A, a homologue of RASSF1A tumour suppressor gene is inactivated in human cancers. Oncogene. 2003;22:947–54.

    CAS  PubMed  Google Scholar 

  3. 3.

    Tommasi S, Zhang X-f, Pfeifer GP, Dammann R, Jin S-G, Avruch J. RASSF3 and NORE1: identification and cloning of two human homologues of the putative tumor suppressor gene RASSF1. Oncogene. 2002;21:2713–20.

    CAS  PubMed  Google Scholar 

  4. 4.

    van der Weyden L, Adams DJ. The Ras-association domain family (RASSF) members and their role in human tumourigenesis. Biochim Biophys Acta. 2007;1776:58–85.

    PubMed  PubMed Central  Google Scholar 

  5. 5.

    Chen J, Lui WO, Vos MD, Clark GJ, Takahashi M, Schoumans J, et al. The t(1;3) breakpoint-spanning genes LSAMP and NORE1 are involved in clear cell renal cell carcinomas. Cancer Cell. 2003;4:405–13.

    CAS  PubMed  Google Scholar 

  6. 6.

    Irimia M, Fraga MF, Sanchez-Cespedes M, Esteller M. CpG island promoter hypermethylation of the Ras-effector gene NORE1A occurs in the context of a wild-type K-ras in lung cancer. Oncogene. 2004;23:8695–9.

    CAS  PubMed  Google Scholar 

  7. 7.

    Lee CK, Lee J-H, Lee M-G, Jeong S-I, Ha T-K, Kang M-J, et al. Epigenetic inactivation of the NORE1 gene correlates with malignant progression of colorectal tumors. BMC Cancer. 2010;10:577.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. 8.

    Avruch J, Xavier R, Bardeesy N, Zhang X-F, Praskova M, Zhou D, et al. Rassf family of tumor suppressor polypeptides. J Biol Chem. 2009;284:11001–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. 9.

    Khokhlatchev A, Rabizadeh S, Xavier R, Nedwidek M, Chen T, Zhang XF, et al. Identification of a novel Ras-regulated proapoptotic pathway. Curr Biol. 2002;12:253–65.

    CAS  PubMed  Google Scholar 

  10. 10.

    Donninger H, Calvisi DF, Barnoud T, Clark J, Schmidt ML, Vos MD, et al. NORE1A is a Ras senescence effector that controls the apoptotic/senescent balance of p53 via HIPK2. J Cell Biol. 2015;208:777–89.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. 11.

    Ortiz-Vega S, Khokhlatchev A, Nedwidek M, Zhang XF, Dammann R, Pfeifer GP, et al. The putative tumor suppressor RASSF1A homodimerizes and heterodimerizes with the Ras-GTP binding protein Nore1. Oncogene. 2002;21:1381–90.

    CAS  PubMed  Google Scholar 

  12. 12.

    Calvisi DF, Donninger H, Vos MD, Birrer MJ, Gordon L, Leaner V, et al. NORE1A tumor suppressor candidate modulates p21CIP1 via p53. Cancer Res. 2009;69:4629–37.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. 13.

    Park J, Kang SI, Lee SY, Zhang XF, Kim MS, Beers LF, et al. Tumor suppressor Ras association domain family 5 (RASSF5/NORE1) mediates death receptor ligand-induced apoptosis. J Biol Chem. 2010;285:35029–38.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. 14.

    Balkwill F. Tumour necrosis factor and cancer. Nat Rev Cancer. 2009;9:361–71.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. 15.

    Kraus S, Arber N. Inflammation and colorectal cancer. Curr Opin Pharmacol. 2009;9:405–10.

    CAS  PubMed  Google Scholar 

  16. 16.

    Talmadge JE, Phillips H, Schneider M, Rowe T, Pennington R, Bowersox O, et al. Immunomodulatory properties of recombinant murine and human tumor necrosis factor. Cancer Res. 1988;48:584–8.

    Google Scholar 

  17. 17.

    Wang P, Qiu W, Dudgeon C, Liu H, Huang C, Zambetti GP, et al. PUMA is directly activated by NF-kappaB and contributes to TNF-alpha-induced apoptosis. Cell Death Differ. 2009;16:1192–202.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. 18.

    Matthews C, Colburn N, Young M. AP-1 a target for cancer prevention. Curr Cancer Drug Targets. 2007;7:317–24.

    CAS  PubMed  Google Scholar 

  19. 19.

    Faustman D, Davis M. TNF receptor 2 pathway: drug target for autoimmune diseases. Nat Rev Drug Discov. 2010;9:482–93.

    CAS  PubMed  Google Scholar 

  20. 20.

    Schneider-Brachert W, Heigl U, Ehrenschwender M. Membrane trafficking of death receptors: implications on signalling. Int J Mol Sci. 2013;14:14475–503.

    PubMed  PubMed Central  Google Scholar 

  21. 21.

    Ofengeim D, Yuan J. Regulation of RIP1 kinase signalling at the crossroads of inflammation and cell death. Nature reviews. Mol Cell Biol. 2013;14:727–36.

    CAS  Google Scholar 

  22. 22.

    Wertz IE, Dixit VM. Regulation of death receptor signaling by the ubiquitin system. Cell Death Differ. 2010;17:14–24.

    CAS  PubMed  Google Scholar 

  23. 23.

    Vucic D, Dixit VM, Wertz IE. Ubiquitylation in apoptosis: a post-translational modification at the edge of life and death. Nature Rev Mol Cell Biol. 2011;12:439–52.

    CAS  Google Scholar 

  24. 24.

    Roussos ET, Condeelis JS, Patsialou A. Chemotaxis in cancer. Nat Rev Cancer. 2011;11:573–87.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. 25.

    Colotta F, Allavena P, Sica A, Garlanda C, Mantovani A. Cancer-related inflammation, the seventh hallmark of cancer: links to genetic instability. Carcinogenesis. 2009;30:1073–81.

    CAS  PubMed  Google Scholar 

  26. 26.

    Hong IS. Stimulatory versus suppressive effects of GM-CSF on tumor progression in multiple cancer types. Exp Mol Med. 2016;48:242–8.

    Google Scholar 

  27. 27.

    Schneider-Brachert W, Tchikov V, Neumeyer J, Jakob M, Winoto-Morbach S, Held-Feindt J, et al. Compartmentalization of TNF receptor 1 signaling: internalized TNF receptosomes as death signaling vesicles. Immunity. 2004;21:415–28.

    CAS  PubMed  Google Scholar 

  28. 28.

    Yau R, Rape M. The increasing complexity of the ubiquitin code. Nat Cell Biol. 2016;18:579–86.

    CAS  PubMed  Google Scholar 

  29. 29.

    Kim H, Vick P, Hedtke J, Ploper D, De Robertis EM. Wnt signaling translocates Lys48-linked polyubiquitinated proteins to the lysosomal pathway. Cell Rep. 2015;11:1151–9.

    CAS  PubMed  Google Scholar 

  30. 30.

    Fritsch J, Stephan M, Tchikov V, Winoto-Morbach S, Gubkina S, Kabelitz D, et al. Cell fate decisions regulated by k63 ubiquitination of tumor necrosis factor receptor 1. Mol Cell Biol. 2014;34:3214–28.

    PubMed  PubMed Central  Google Scholar 

  31. 31.

    Foley CJ, Freedman H, Choo SL, Onyskiw C, Fu NY, Yu VC, et al. Dynamics of RASSF1A/MOAP-1 association with death receptors. Mol Cell Biol. 2008;28:4520–35.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. 32.

    Suryaraja R, Anitha M, Anbarasu K, Kumari G, Mahalingam S. The E3 ubiquitin ligase Itch regulates tumor suppressor protein RASSF5/NORE1 stability in an acetylation-dependent manner. Cell Death Dis. 2013;4:565–65.

    Google Scholar 

  33. 33.

    Martínez-Reza I, Díaz L, García-Becerra R. Preclinical and clinical aspects of TNF-α and its receptors TNFR1 and TNFR2 in breast cancer. J Biomed Sci. 2017;24:1–8.

    Google Scholar 

  34. 34.

    Tomita Y, Yang X, Ishida Y, Nemoto-Sasaki Y, Kondo T, Oda M, et al. Spontaneous regression of lung metastasis in the absence of tumor necrosis factor receptor p55. Int J Cancer. 2004;112:927–33.

    CAS  PubMed  Google Scholar 

  35. 35.

    Legler DF, Micheau O, Doucey M-A, Tschopp J, Bron C. Recruitment of TNF receptor 1 to lipid rafts is essential for TNFalpha-mediated NF-kappaB activation. Immunity. 2003;18:655–64.

    CAS  PubMed  Google Scholar 

  36. 36.

    Tchikov V, Bertsch U, Fritsch J, Edelmann B, Schütze S. Subcellular compartmentalization of TNF receptor-1 and CD95 signaling pathways. Eur J Cell Biol. 2011;90:467–75.

    CAS  PubMed  Google Scholar 

  37. 37.

    Jones SJ, Ledgerwood EC, Prins JB, Galbraith J, Johnson DR, Pober JS, et al. TNF recruits TRADD to the plasma membrane but not the trans-Golgi network, the principal subcellular location of TNF-R1. J Immunol. 1999;162:1042–8.

    CAS  PubMed  Google Scholar 

  38. 38.

    D’Alessio A, Al-Lamki RS, Bradley JR, Pober JS. Caveolae participate in tumor necrosis factor receptor 1 signaling and internalization in a human endothelial cell line. Am J Pathol. 2005;166:1273–82.

    PubMed  PubMed Central  Google Scholar 

  39. 39.

    Hicke L, Dunn R. Regulation of membrane protein transport by ubiquitin and ubiquitin-binding proteins. Annu Rev Cell Dev Biol. 2003;19:141–72.

    CAS  PubMed  Google Scholar 

  40. 40.

    Kim S, Takahashi H, Lin WW, Descargues P, Grivennikov S, Kim Y, et al. Carcinoma-produced factors activate myeloid cells through TLR2 to stimulate metastasis. Nature. 2009;457:102–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. 41.

    Perez D, White E. TNF-alpha signals apoptosis through a bid-dependent conformational change in Bax that is inhibited by E1B 19K. Mol Cell. 2000;6:53–63.

    CAS  PubMed  Google Scholar 

  42. 42.

    Baillat G, Garrouste F, Remacle-Bonnet M, Marvaldi J, Pommier G. Bcl-xL/Bax ratio is altered by IFNγ in TNFα- but not in TRAIL-induced apoptosis in colon cancer cell line. Biochim Biophys Acta. 2005;1745:101–10.

    CAS  PubMed  Google Scholar 

  43. 43.

    Johnson BN, Berger AK, Cortese GP, LaVoie MJ. The ubiquitin E3 ligase parkin regulates the proapoptotic function of Bax. Proc Natl Acad Sci U S A. 2012;109:6283–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. 44.

    Benard G, Neutzner A, Peng G, Wang C, Livak F, Youle RJ, et al. IBRDC2, an IBR-type E3 ubiquitin ligase, is a regulatory factor for Bax and apoptosis activation. EMBO J. 2010;29:1458–71.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. 45.

    Guan JJ, Zhang XD, Sun W, Qi L, Wu JC, Qin ZH. DRAM1 regulates apoptosis through increasing protein levels and lysosomal localization of BAX. Cell Death Dis. 2015;6:1–12.

    CAS  Google Scholar 

  46. 46.

    Shembade N, Harhaj NS, Parvatiyar K, Copeland NG, Jenkins NA, Matesic LE, et al. The E3 ligase Itch negatively regulates inflammatory signaling pathways by controlling the function of the ubiquitin-editing enzyme A20. Nat Immunol. 2008;9:254–62.

    CAS  PubMed  Google Scholar 

  47. 47.

    Chang L, Kamata H, Solinas G, Luo JL, Maeda S, Venuprasad K, et al. The E3 ubiquitin ligase itch couples JNK activation to TNFα-induced cell death by inducing c-FLIPL turnover. Cell. 2006;124:601–13.

    CAS  PubMed  Google Scholar 

  48. 48.

    Azakir BA, Desrochers G, Angers A. The ubiquitin ligase Itch mediates the antiapoptotic activity of epidermal growth factor by promoting the ubiquitylation and degradation of the truncated C-terminal portion of Bid. FEBS J. 2010;277:1319–30.

    CAS  PubMed  Google Scholar 

  49. 49.

    Choi YB, Shembade N, Parvatiyar K, Balachandran S, Harhaj EW. TAX1BP1 restrains virus-induced apoptosis by facilitating Itch-mediated degradation of the mitochondrial adaptor MAVS. Mol Cell Biol. 2017;37:1–18.

    Google Scholar 

  50. 50.

    Stieglitz B, Bee C, Schwarz D, Yildiz Ö, Moshnikova A, Khokhlatchev A, et al. Novel type of Ras effector interaction established between tumour suppressor NORE1A and Ras switch II. EMBO J. 2008;27:1995–2005.

    CAS  PubMed  PubMed Central  Google Scholar 

  51. 51.

    Baksh S, Tommasi S, Fenton S, Yu VC, Martins LM, Pfeifer GP, et al. The tumor suppressor RASSF1A and MAP-1 link death receptor signaling to bax conformational change and cell death. Mol Cell. 2005;18:637–50.

    CAS  PubMed  Google Scholar 

  52. 52.

    Prando ÉdC, Cavalli LR, Rainho CA. Evidence of epigenetic regulation of the tumor suppressor gene cluster flanking RASSF1 in breast cancer cell lines. Epigenetics. 2011;6:1413–24.

    Google Scholar 

  53. 53.

    Zheng WW, Zhao LD, Wang GX, Kang XC, Qin L, Ji JJ, et al. Promoter methylation and expression of RASSF1A genes as predictors of disease progression in colorectal cancer. Int J Clin Exp Med. 2016;9:2027–36.

    CAS  Google Scholar 

Download references


This work was supported in part by National Research Foundation of Korea (Grant numbers NRF-2018R1A2A1A05020236, SGC) and Korea University Grant (K1705811, SGC), Republic of Korea.

Author information




KPK, SIJ, JSL, and KWL performed the experiments. MGL and SGC provided interpretation of the data. KPK and SGC wrote the paper. SGC is responsible for the designing and funding collections. All authors have approved this paper.

Corresponding author

Correspondence to Sung-Gil Chi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ko, KP., Jeong, SI., Lim, JS. et al. NORE1A directs apoptotic switch of TNF signaling through reciprocal modulation of ITCH-mediated destruction of TNFRI and BAX. Oncogene 39, 5675–5689 (2020).

Download citation


Quick links