Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

DOCK6 promotes chemo- and radioresistance of gastric cancer by modulating WNT/β-catenin signaling and cancer stem cell traits

Abstract

Gastric cancer (GC) is the third leading cause of cancer-related mortality worldwide and prognosis after potentially curative gastrectomy remains poor. Administration of GC-targeting molecules in combination with adjuvant chemo- or radiotherapy following surgical resection has been proposed as a potentially effective treatment option. Here, we have identified DOCK6, a guanine nucleotide exchange factor (GEF) for Rac1 and CDC42, as an independent biomarker for GC prognosis. Clinical findings indicate the positive correlation of higher DOCK6 expression with tumor size, depth of invasion, lymph node metastasis, vascular invasion, and pathological stage. Furthermore, elevated DOCK6 expression was significantly associated with shorter cumulative survival in both univariate and multivariate analyses. Gene ontology analysis of three independent clinical GC cohorts revealed significant involvement of DOCK6-correlated genes in the WNT/β-catenin signaling pathway. Ectopic expression of DOCK6 promoted GC cancer stem cell (CSC) characteristics and chemo- or radioresistance concomitantly through Rac1 activation. Conversely, depletion of DOCK6 suppressed CSC phenotypes and progression of GC, further demonstrating the pivotal role of DOCK6 in GC progression. Our results demonstrate a novel mechanistic link between DOCK6, Rac1, and β-catenin in GCCSC for the first time, supporting the utility of DOCK6 as an independent marker of GC

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: DOCK6 overexpression in human GC is correlated with patient prognosis.
Fig. 2: DOCK6 depletion suppresses proliferation and Matrigel invasion of GC cells.
Fig. 3: Overexpression of DOCK6 promotes GC progression, chemo- and radioresistance, and GC stemness.
Fig. 4: Silencing of DOCK6 suppresses cancer progression and chemo- and radioresistance via inhibiting GC stemness.
Fig. 5: DOCK6 activates Rac1 and concomitant WNT/β-catenin signaling to promote GC proliferation, Matrigel invasion, and chemo- and radioresistance.
Fig. 6: DOCK6 exerts its GEF activity to activate Rac1 and promoting aggressive properties of GC.

Similar content being viewed by others

References

  1. Baniak N, Senger JL, Ahmed S, Kanthan SC, Kanthan R. Gastric biomarkers: a global review. World J Surg Oncol. 2016;14:212.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Tsai MM, Wang CS, Tsai CY, Huang CG, Lee KF, Huang HW, et al. Circulating microRNA-196a/b are novel biomarkers associated with metastatic gastric cancer. Eur J Cancer. 2016;64:137–48.

    Article  CAS  PubMed  Google Scholar 

  3. Kwon KJ, Shim KN, Song EM, Choi JY, Kim SE, Jung HK, et al. Clinicopathological characteristics and prognosis of signet ring cell carcinoma of the stomach. Gastric Cancer. 2014;17:43–53.

    Article  PubMed  Google Scholar 

  4. Dalerba P, Cho RW, Clarke MF. Cancer stem cells: models and concepts. Annu Rev Med. 2007;58:267–84.

    Article  CAS  PubMed  Google Scholar 

  5. Visvader JE, Lindeman GJ. Cancer stem cells in solid tumours: accumulating evidence and unresolved questions. Nat Rev Cancer. 2008;8:755–68.

    Article  CAS  PubMed  Google Scholar 

  6. Takaishi S, Okumura T, Tu S, Wang SS, Shibata W, Vigneshwaran R, et al. Identification of gastric cancer stem cells using the cell surface marker CD44. Stem Cells. 2009;27:1006–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Hoey T, Yen WC, Axelrod F, Basi J, Donigian L, Dylla S, et al. DLL4 blockade inhibits tumor growth and reduces tumor-initiating cell frequency. Cell Stem Cell. 2009;5:168–77.

    Article  CAS  PubMed  Google Scholar 

  8. Barker N, Huch M, Kujala P, van de Wetering M, Snippert HJ, van Es JH, et al. Lgr5(+ve) stem cells drive self-renewal in the stomach and build long-lived gastric units in vitro. Cell Stem Cell. 2010;6:25–36.

    Article  CAS  PubMed  Google Scholar 

  9. Stamos JL, Weis WI. The beta-catenin destruction complex. Cold Spring Harb Perspect Biol. 2013;5:a007898.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Polakis P. Wnt signaling in cancer. Cold Spring Harb Perspect Biol. 2012;4:a008052.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Miyamoto Y, Yamauchi J, Sanbe A, Tanoue A. Dock6, a Dock-C subfamily guanine nucleotide exchanger, has the dual specificity for Rac1 and Cdc42 and regulates neurite outgrowth. Exp Cell Res. 2007;313:791–804.

    Article  CAS  PubMed  Google Scholar 

  12. Gadea G, Blangy A. Dock-family exchange factors in cell migration and disease. Eur J Cell Biol. 2014;93:466–77.

    Article  CAS  PubMed  Google Scholar 

  13. Shi L. Dock protein family in brain development and neurological disease. Commun Integr Biol. 2013;6:e26839.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Shaheen R, Faqeih E, Sunker A, Morsy H, Al-Sheddi T, Shamseldin HE, et al. Recessive mutations in DOCK6, encoding the guanidine nucleotide exchange factor DOCK6, lead to abnormal actin cytoskeleton organization and Adams-Oliver syndrome. Am J Hum Genet. 2011;89:328–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Yamauchi J, Miyamoto Y, Chan JR, Tanoue A. ErbB2 directly activates the exchange factor Dock7 to promote Schwann cell migration. J Cell Biol. 2008;181:351–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Gotoh K, Tanaka Y, Nishikimi A, Inayoshi A, Enjoji M, Takayanagi R, et al. Differential requirement for DOCK2 in migration of plasmacytoid dendritic cells versus myeloid dendritic cells. Blood. 2008;111:2973–6.

    Article  CAS  PubMed  Google Scholar 

  17. McNiven MA, Baldassarre M, Buccione R. The role of dynamin in the assembly and function of podosomes and invadopodia. Front Biosci. 2004;9:1944–53.

    Article  CAS  PubMed  Google Scholar 

  18. Chen X, Leung SY, Yuen ST, Chu KM, Ji J, Li R, et al. Variation in gene expression patterns in human gastric cancers. Mol Biol Cell. 2003;14:3208–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Wang Q, Wen YG, Li DP, Xia J, Zhou CZ, Yan DW, et al. Upregulated INHBA expression is associated with poor survival in gastric cancer. Med Oncol. 2012;29:77–83.

    Article  PubMed  CAS  Google Scholar 

  20. Cho JY, Lim JY, Cheong JH, Park YY, Yoon SL, Kim SM, et al. Gene expression signature-based prognostic risk score in gastric cancer. Clin Cancer Res. 2011;17:1850–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Bravo-Cordero JJ, Hodgson L, Condeelis J. Directed cell invasion and migration during metastasis. Curr Opin Cell Biol. 2012;24:277–83.

    Article  CAS  PubMed  Google Scholar 

  22. Han ME, Jeon TY, Hwang SH, Lee YS, Kim HJ, Shim HE, et al. Cancer spheres from gastric cancer patients provide an ideal model system for cancer stem cell research. Cell Mol Life Sci. 2011;68:3589–605.

    Article  CAS  PubMed  Google Scholar 

  23. Clarke MF, Dick JE, Dirks PB, Eaves CJ, Jamieson CH, Jones DL, et al. Cancer stem cells–perspectives on current status and future directions: AACR Workshop on cancer stem cells. Cancer Res. 2006;66:9339–44.

    Article  CAS  PubMed  Google Scholar 

  24. Lou H, Dean M. Targeted therapy for cancer stem cells: the patched pathway and ABC transporters. Oncogene. 2007;26:1357–60.

    Article  CAS  PubMed  Google Scholar 

  25. D’Errico M, de Rinaldis E, Blasi MF, Viti V, Falchetti M, Calcagnile A, et al. Genome-wide expression profile of sporadic gastric cancers with microsatellite instability. Eur J Cancer. 2009;45:461–9.

    Article  PubMed  CAS  Google Scholar 

  26. Gilles C, Polette M, Mestdagt M, Nawrocki-Raby B, Ruggeri P, Birembaut P, et al. Transactivation of vimentin by beta-catenin in human breast cancer cells. Cancer Res. 2003;63:2658–64.

    CAS  PubMed  Google Scholar 

  27. Saegusa M, Hashimura M, Kuwata T, Hamano M, Okayasu I. Upregulation of TCF4 expression as a transcriptional target of beta-catenin/p300 complexes during trans-differentiation of endometrial carcinoma cells. Lab Invest. 2005;85:768–79.

    Article  CAS  PubMed  Google Scholar 

  28. Notani D, Gottimukkala KP, Jayani RS, Limaye AS, Damle MV, Mehta S, et al. Global regulator SATB1 recruits beta-catenin and regulates T(H)2 differentiation in Wnt-dependent manner. PLoS Biol. 2010;8:e1000296.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Upadhyay G, Goessling W, North TE, Xavier R, Zon LI, Yajnik V. Molecular association between beta-catenin degradation complex and Rac guanine exchange factor DOCK4 is essential for Wnt/beta-catenin signaling. Oncogene. 2008;27:5845–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Debruyne DN, Turchi L, Burel-Vandenbos F, Fareh M, Almairac F, Virolle V, et al. DOCK4 promotes loss of proliferation in glioblastoma progenitor cells through nuclear beta-catenin accumulation and subsequent miR-302-67 cluster expression. Oncogene. 2018;37:241–54.

    Article  CAS  PubMed  Google Scholar 

  31. Jamieson C, Lui C, Brocardo MG, Martino-Echarri E, Henderson BR. Rac1 augments Wnt signaling by stimulating beta-catenin-lymphoid enhancer factor-1 complex assembly independent of beta-catenin nuclear import. J Cell Sci. 2015;128:3933–46.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Wu X, Tu X, Joeng KS, Hilton MJ, Williams DA, Long F. Rac1 activation controls nuclear localization of beta-catenin during canonical Wnt signaling. Cell. 2008;133:340–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. O’Dwyer D, Ralton LD, O’Shea A, Murray GI. The proteomics of colorectal cancer: identification of a protein signature associated with prognosis. PLoS ONE. 2011;6:e27718.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Li X, Jiang M, Chen D, Xu B, Wang R, Chu Y, et al. miR-148b-3p inhibits gastric cancer metastasis by inhibiting the Dock6/Rac1/Cdc42 axis. J Exp Clin Cancer Res. 2018;37:71.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Al-Hajj M. Cancer stem cells and oncology therapeutics. Curr Opin Oncol. 2007;19:61–64.

    Article  PubMed  Google Scholar 

  36. Yoon CH, Hyun KH, Kim RK, Lee H, Lim EJ, Chung HY, et al. The small GTPase Rac1 is involved in the maintenance of stemness and malignancies in glioma stem-like cells. FEBS Lett. 2011;585:2331–8.

    Article  CAS  PubMed  Google Scholar 

  37. Mao J, Fan S, Ma W, Fan P, Wang B, Zhang J, et al. Roles of Wnt/beta-catenin signaling in the gastric cancer stem cells proliferation and salinomycin treatment. Cell Death Dis. 2014;5:e1039.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Chahdi A, Raufman JP. The Cdc42/Rac nucleotide exchange factor protein beta1Pix (Pak-interacting exchange factor) modulates beta-catenin transcriptional activity in colon cancer cells: evidence for direct interaction of beta1PIX with beta-catenin. J Biol Chem. 2013;288:34019–29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Buongiorno P, Pethe VV, Charames GS, Esufali S, Bapat B. Rac1 GTPase and the Rac1 exchange factor Tiam1 associate with Wnt-responsive promoters to enhance beta-catenin/TCF-dependent transcription in colorectal cancer cells. Mol Cancer. 2008;7:73.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Schlessinger K, Hall A, Tolwinski N. Wnt signaling pathways meet Rho GTPases. Genes Dev. 2009;23:265–77.

    Article  CAS  PubMed  Google Scholar 

  41. Japanese Gastric Cancer A. Japanese classification of gastric carcinoma—2nd english edition. Gastric Cancer. 1998;1:10–24.

    Article  Google Scholar 

  42. Tsai CY, Chi HC, Chi LM, Yang HY, Tsai MM, Lee KF, et al. Argininosuccinate synthetase 1 contributes to gastric cancer invasion and progression by modulating autophagy. FASEB J. 2018;32:2601–14.

    Article  PubMed  Google Scholar 

  43. Chi HC, Chen SL, Lin SL, Tsai CY, Chuang WY, Lin YH, et al. Thyroid hormone protects hepatocytes from HBx-induced carcinogenesis by enhancing mitochondrial turnover. Oncogene. 2017;36:5274–84.

    Article  CAS  PubMed  Google Scholar 

  44. Chi HC, Chen SL, Tsai CY, Chuang WY, Huang YH, Tsai MM, et al. Thyroid hormone suppresses hepatocarcinogenesis via DAPK2 and SQSTM1-dependent selective autophagy. Autophagy. 2016;12:2271–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Vojnits K, Pan H, Mu X, Li Y. Characterization of an injury induced population of muscle-derived stem cell-like cells. Sci Rep. 2015;5:17355.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Chen G, Deng X. Cell synchronization by double thymidine block. Bio Protoc. 2018;8:e2994.

    PubMed  PubMed Central  Google Scholar 

  47. Chi HC, Chen SL, Cheng YH, Lin TK, Tsai CY, Tsai MM, et al. Chemotherapy resistance and metastasis-promoting effects of thyroid hormone in hepatocarcinoma cells are mediated by suppression of FoxO1 and Bim pathway. Cell Death Dis. 2016;7:e2324.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from Chang Gung Memorial Hospital, Taoyuan, Taiwan (CMRPD1H0631-0632, CMRPD1G0421-0423, CMRPD1J0051, NMRPD1G0942, and NMRPD1G0951 to K-HL; CMRPG6F0621-0623 and NMRPG6G0051 to C-SW) and the Ministry of Science and Technology of the Republic of China (MOST 106-2320-B-182-031-MY3 and 106-2320-B-182-032-MY3 to K-HL, 106-2314-B-182A-130 to C-SW, and MOST 105-2321-B-182 -002-MY3 and 107-2320-B-182-025 to H-CC).

Author information

Authors and Affiliations

Authors

Contributions

Study concept and design acquisition of data: H-CC, C-YT, H-YY, L-HW, W-JC, C-SW, and K-HL. Analysis and interpretation of data: H-CC, C-YT, H-YY, C-HL, W-JW, K-FL, L-YL, J-HH, Y-FC, M-MT, C-TY, and CHW. Drafting of the manuscript: H-CC, C-YT, and H-YY. Critical revision of the manuscript for important intellectual content: C-HL, W-JW, Y-FC, CHW, C-CH, and L-HW. Review and editing: C-TY, C-CH, L-HW, W-JC, C-SW, and K-HL. Obtained funding: H-CC, C-CH, W-JC, C-SW, and K-HL. Technical and material support: J-HH, C-TY, CHW, C-CH, and L-HW.

Corresponding authors

Correspondence to Lu-Hai Wang, Wei-Jan Chen or Kwang-Huei Lin.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chi, HC., Tsai, CY., Wang, CS. et al. DOCK6 promotes chemo- and radioresistance of gastric cancer by modulating WNT/β-catenin signaling and cancer stem cell traits. Oncogene 39, 5933–5949 (2020). https://doi.org/10.1038/s41388-020-01390-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-020-01390-0

This article is cited by

Search

Quick links