Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Cancer progression is mediated by proline catabolism in non-small cell lung cancer

Abstract

Dysregulated metabolism contributes to cancer initiation and progression, but the key drivers of these pathways are just being discovered. Here, we report a critical role for proline catabolism in non-small cell lung cancer (NSCLC). Proline dehydrogenase (PRODH) is activated to reduce proline levels by the chromatin remodeling factor lymphoid-specific helicase (LSH), an epigenetic driver of NSCLC. PRODH promotes NSCLC tumorigenesis by inducing epithelial to mesenchymal transition (EMT) and IKKα-dependent inflammatory genes, including CXCL1, LCN2, and IL17C. Consistently, proline addition promotes the expression of these inflammatory genes, as well as EMT, tumor cell proliferation, and migration in vitro and tumor growth in vivo, while the depletion or inhibition of PRODH blocks these phenotypes. In summary, we reveal an essential metabolic pathway amenable to targeting in NSCLC.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: LSH decreases levels of proline in NSCLC.
Fig. 2: LSH regulates PRODH expression in a p53-dependent manner.
Fig. 3: Overexpression of PRODH promotes NSCLC progression.
Fig. 4: Depletion of PRODH attenuates NSCLC progression.
Fig. 5: PRODH regulates Cxcl1, Lcn2, and IL17c inflammatory genes.
Fig. 6: PRODH regulates inflammatory cytokines by affecting phosphorylation of IKKα.
Fig. 7: Proline catabolism via PRODH supports NSCLC progression.

Similar content being viewed by others

References

  1. Herbst RS, Morgensztern D, Boshoff C. The biology and management of non-small cell lung cancer. Nature. 2018;553:446.

    CAS  PubMed  Google Scholar 

  2. Govindan R, Ding L, Griffith M, Subramanian J, Dees ND, Kanchi KL, et al. Genomic landscape of non-small cell lung cancer in smokers and never-smokers. Cell. 2012;150:1121–34.

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Balgkouranidou I, Liloglou T, Lianidou ES. Lung cancer epigenetics: emerging biomarkers. Biomark Med. 2013;7:49–58.

    CAS  PubMed  Google Scholar 

  4. Zhang Y. Recent progress in the epigenetics and chromatin field. Cell Res. 2011;21:373–4.

    PubMed  PubMed Central  Google Scholar 

  5. Katada S, Imhof A, Sassone-Corsi P. Connecting threads: epigenetics and metabolism. Cell. 2012;148:24–8.

    CAS  PubMed  Google Scholar 

  6. Gut P, Verdin E. The nexus of chromatin regulation and intermediary metabolism. Nature. 2013;502:489–98.

    CAS  PubMed  Google Scholar 

  7. Jiang Y, Mao C, Yang R, Yan B, Shi Y, Liu X, et al. EGLN1/c-Myc induced lymphoid-specific helicase inhibits ferroptosis through lipid metabolic gene expression changes. Theranostics. 2017;7:3293–305.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Yu W, McIntosh C, Lister R, Zhu I, Han Y, Ren J, et al. Genome-wide DNA methylation patterns in LSH mutant reveals de-repression of repeat elements and redundant epigenetic silencing pathways. Genome Res. 2014;24:1613–23.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Tao Y, Xi S, Shan J, Maunakea A, Che A, Briones V, et al. Lsh, chromatin remodeling family member, modulates genome-wide cytosine methylation patterns at nonrepeat sequences. Proc Natl Acad Sci USA. 2011;108:5626–31.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Fan T, Yan Q, Huang J, Austin S, Cho E, Ferris D, et al. Lsh-deficient murine embryonal fibroblasts show reduced proliferation with signs of abnormal mitosis. Cancer Res. 2003;63:4677–83.

    CAS  PubMed  Google Scholar 

  11. Yang R, Liu N, Chen L, Jiang Y, Shi Y, Mao C, et al. LSH interacts with and stabilizes GINS4 transcript that promotes tumourigenesis in non-small cell lung cancer. J Exp Clin Cancer Res. 2019;38:280.

    PubMed  PubMed Central  Google Scholar 

  12. Chen L, Shi Y, Liu N, Wang Z, Yang R, Yan B, et al. DNA methylation modifier LSH inhibits p53 ubiquitination and transactivates p53 to promote lipid metabolism. Epigenetics Chromatin. 2019;12:59.

    PubMed  PubMed Central  Google Scholar 

  13. Colak D, Nofal A, Albakheet A, Nirmal M, Jeprel H, Eldali A, et al. Age-specific gene expression signatures for breast tumors and cross-species conserved potential cancer progression markers in young women. PLoS ONE 2013;8:e63204.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Ryu B, Kim DS, Deluca AM, Alani RM. Comprehensive expression profiling of tumor cell lines identifies molecular signatures of melanoma progression. PLoS ONE 2007;2:e594.

    PubMed  PubMed Central  Google Scholar 

  15. Yang R, Liu N, Chen L, Jiang Y, Shi Y, Mao C, et al. GIAT4RA functions as a tumor suppressor in non-small cell lung cancer by counteracting Uchl3-mediated deubiquitination of LSH. Oncogene. 2019;38:7133–45.

    CAS  PubMed  Google Scholar 

  16. Xiao D, Huang J, Pan Y, Li H, Fu C, Mao C, et al. Chromatin remodeling factor LSH is upregulated by the LRP6-GSK3beta-E2F1 axis linking reversely with survival in gliomas. Theranostics. 2017;7:132–43.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. He X, Yan B, Liu S, Jia J, Lai W, Xin X, et al. Chromatin remodeling factor LSH drives cancer progression by suppressing the activity of fumarate hydratase. Cancer Res. 2016;76:5743–55.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Yuan J, Luo K, Zhang L, Cheville JC, Lou Z. USP10 regulates p53 localization and stability by deubiquitinating p53. Cell. 2010;140:384–96.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Kruiswijk F, Labuschagne CF, Vousden KH. p53 in survival, death and metabolic health: a lifeguard with a licence to kill. Nat Rev Mol Cell Biol. 2015;16:393–405.

    CAS  PubMed  Google Scholar 

  20. Kastenhuber ER, Lowe SW. Putting p53 in context. Cell. 2017;170:1062–78.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Liu S, Yan B, Lai W, Chen L, Xiao D, Xi S, et al. As a novel p53 direct target, bidirectional gene HspB2/alphaB-crystallin regulates the ROS level and Warburg effect. Biochim Biophys Acta. 2014;1839:592–603.

    CAS  PubMed  Google Scholar 

  22. He Y, Gao M, Cao Y, Tang H, Liu S, Tao Y. Nuclear localization of metabolic enzymes in immunity and metastasis. Biochim Biophys Acta Rev Cancer. 2017;1868:359–71.

    CAS  PubMed  Google Scholar 

  23. Loayza-Puch F, Rooijers K, Buil LC, Zijlstra J, Oude Vrielink JF, Lopes R, et al. Tumour-specific proline vulnerability uncovered by differential ribosome codon reading. Nature. 2016;530:490–4.

    CAS  PubMed  Google Scholar 

  24. Zhang Z, Tang H, Chen P, Xie H, Tao Y. Demystifying the manipulation of host immunity, metabolism, and extraintestinal tumors by the gut microbiome. Signal Transduct Target Ther. 2019;4:41.

    PubMed  PubMed Central  Google Scholar 

  25. He Y, Gao M, Cao Y, Tang H, Liu S, Tao Y. Nuclear localization of metabolic enzymes in immunity and metastasis. Biochim Biophys Acta Rev Cancer. 2017;1868:359–71.

    CAS  PubMed  Google Scholar 

  26. He Y, Gao M, Cao Y, Tang H, Liu S, Tao Y. Metabolic intermediates in tumorigenesis and progression. Int J Biol Sci. 2019;15:1187–99.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Phang JM. Proline metabolism in cell regulation and cancer biology: recent advances and hypotheses. Antioxid Redox Signal. 2019;30:635–49.

    CAS  PubMed  Google Scholar 

  28. Donald SP, Sun XY, Hu CA, Yu J, Mei JM, Valle D, et al. Proline oxidase, encoded by p53-induced gene-6, catalyzes the generation of proline-dependent reactive oxygen species. Cancer Res. 2001;61:1810–5.

    CAS  PubMed  Google Scholar 

  29. Olivares O, Mayers JR, Gouirand V, Torrence ME, Gicquel T, Borge L, et al. Collagen-derived proline promotes pancreatic ductal adenocarcinoma cell survival under nutrient limited conditions. Nat Commun. 2017;8:16031.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Liu W, Glunde K, Bhujwalla ZM, Raman V, Sharma A, Phang JM. Proline oxidase promotes tumor cell survival in hypoxic tumor microenvironments. Cancer Res. 2012;72:3677–86.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Liu W, Phang JM. Proline dehydrogenase (oxidase), a mitochondrial tumor suppressor, and autophagy under the hypoxia microenvironment. Autophagy. 2012;8:1407–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Yan Y, Chang L, Tian H, Wang L, Zhang Y, Yang T, et al. 1-Pyrroline-5-carboxylate released by prostate cancer cell inhibit T cell proliferation and function by targeting SHP1/cytochrome c oxidoreductase/ROS Axis. J Immunother Cancer. 2018;6:148.

    PubMed  PubMed Central  Google Scholar 

  33. Elia I, Broekaert D, Christen S, Boon R, Radaelli E, Orth MF, et al. Proline metabolism supports metastasis formation and could be inhibited to selectively target metastasizing cancer cells. Nat Commun. 2017;8:15267.

    PubMed  PubMed Central  Google Scholar 

  34. Liu Y, Borchert GL, Surazynski A, Phang JM. Proline oxidase, a p53-induced gene, targets COX-2/PGE2 signaling to induce apoptosis and inhibit tumor growth in colorectal cancers. Oncogene. 2008;27:6729–37.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Liu Y, Borchert GL, Donald SP, Diwan BA, Anver M, Phang JM. Proline oxidase functions as a mitochondrial tumor suppressor in human cancers. Cancer Res. 2009;69:6414–22.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Diakos CI, Charles KA, McMillan DC, Clarke SJ. Cancer-related inflammation and treatment effectiveness. Lancet Oncol. 2014;15:e493–503.

    PubMed  Google Scholar 

  37. Mills EL, Kelly B, Logan A, Costa ASH, Varma M, Bryant CE, et al. Succinate dehydrogenase supports metabolic repurposing of mitochondria to drive inflammatory macrophages. Cell. 2016;167:457–70.e13.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Lampropoulou V, Sergushichev A, Bambouskova M, Nair S, Vincent EE, Loginicheva E, et al. Itaconate links inhibition of succinate dehydrogenase with macrophage metabolic remodeling and regulation of inflammation. Cell Metab. 2016;24:158–66.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Hinz M, Scheidereit C. The IkappaB kinase complex in NF-kappaB regulation and beyond. EMBO Rep. 2014;15:46–61.

    CAS  PubMed  Google Scholar 

  40. Jiang Y, He Y, Liu S, Tao Y. Chromatin remodeling factor lymphoid-specific helicase inhibits ferroptosis through lipid metabolic genes in lung cancer progression. Chin J Cancer. 2017;36:82.

    PubMed  PubMed Central  Google Scholar 

  41. Liu W, Le A, Hancock C, Lane AN, Dang CV, Fan TW, et al. Reprogramming of proline and glutamine metabolism contributes to the proliferative and metabolic responses regulated by oncogenic transcription factor c-MYC. Proc Natl Acad Sci USA. 2012;109:8983–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Polyak K, Xia Y, Zweier JL, Kinzler KW, Vogelstein B. A model for p53-induced apoptosis. Nature. 1997;389:300–5.

    CAS  PubMed  Google Scholar 

  43. Willis A, Jung EJ, Wakefield T, Chen X. Mutant p53 exerts a dominant negative effect by preventing wild-type p53 from binding to the promoter of its target genes. Oncogene. 2004;23:2330–8.

    CAS  PubMed  Google Scholar 

  44. Thiery JP, Acloque H, Huang RY, Nieto MA. Epithelial-mesenchymal transitions in development and disease. Cell. 2009;139:871–90.

    CAS  PubMed  Google Scholar 

  45. Yan B, Liu S, Shi Y, Liu N, Chen L, Wang X, et al. Activation of AhR with nuclear IKK alpha regulates cancer stem-like properties in the occurrence of radioresistance. Cell Death Dis. 2018;9:490.

    PubMed  PubMed Central  Google Scholar 

  46. Jia J, Shi Y, Yan B, Xiao D, Lai W, Pan Y, et al. LGR5 expression is controled by IKK alpha in basal cell carcinoma through activating STAT3 signaling pathway. Oncotarget. 2016;7:27280–94.

    PubMed  PubMed Central  Google Scholar 

  47. Li Q, Engelhardt JF. Interleukin-1beta induction of NFkappaB is partially regulated by H2O2-mediated activation of NF kappa B-inducing kinase. J Biol Chem. 2006;281:1495–505.

    CAS  PubMed  Google Scholar 

  48. De Ingeniis J, Ratnikov B, Richardson AD, Scott DA, Aza-Blanc P, De SK, et al. Functional specialization in proline biosynthesis of melanoma. PLoS ONE 2012;7:e45190

    PubMed  PubMed Central  Google Scholar 

  49. Liu W, Hancock CN, Fischer JW, Harman M, Phang JM. Proline biosynthesis augments tumor cell growth and aerobic glycolysis: involvement of pyridine nucleotides. Sci Rep. 2015;5:17206.

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Martinez-Outschoorn UE, Peiris-Pages M, Pestell RG, Sotgia F, Lisanti MP. Cancer metabolism: a therapeutic perspective. Nat Rev Clin Oncol. 2017;14:11–31.

    CAS  PubMed  Google Scholar 

  51. Xu W, Yang H, Liu Y, Yang Y, Wang P, Kim SH, et al. Oncometabolite 2-hydroxyglutarate is a competitive inhibitor of alpha-ketoglutarate-dependent dioxygenases. Cancer Cell. 2011;19:17–30.

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Carey BW, Finley LW, Cross JR, Allis CD, Thompson CB. Intracellular alpha-ketoglutarate maintains the pluripotency of embryonic stem cells. Nature. 2015;518:413–6.

    CAS  PubMed  Google Scholar 

  53. Jones PA, Issa JP, Baylin S. Targeting the cancer epigenome for therapy. Nat Rev Genet. 2016;17:630–41.

    CAS  PubMed  Google Scholar 

  54. Kouzarides T. Chromatin modifications and their function. Cell. 2007;128:693–705.

    CAS  PubMed  Google Scholar 

  55. Yu W, Briones V, Lister R, McIntosh C, Han Y, Lee EY, et al. CG hypomethylation in Lsh−/− mouse embryonic fibroblasts is associated with de novo H3K4me1 formation and altered cellular plasticity. Proc Natl Acad Sci USA. 2014;111:5890–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Zhu J, Dou Z, Sammons MA, Levine AJ, Berger SL. Lysine methylation represses p53 activity in teratocarcinoma cancer cells. Proc Natl Acad Sci USA. 2016;113:9822–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Dai C, Gu W. p53 post-translational modification: deregulated in tumorigenesis. Trends Mol Med. 2010;16:528–36.

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Raimondi I, Ciribilli Y, Monti P, Bisio A, Pollegioni L, Fronza G, et al. P53 family members modulate the expression of PRODH, but not PRODH2, via intronic p53 response elements. PLoS ONE 2013;8:e69152.

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Liu W, Phang JM. Proline dehydrogenase (oxidase) in cancer. BioFactors. 2012;38:398–406.

    CAS  PubMed  PubMed Central  Google Scholar 

  60. McDoniels-Silvers AL, Stoner GD, Lubet RA, You M. Differential expression of critical cellular genes in human lung adenocarcinomas and squamous cell carcinomas in comparison to normal lung tissues. Neoplasia. 2002;4:141–50.

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Pao W, Girard N. New driver mutations in non-small-cell lung cancer. Lancet Oncol. 2011;12:175–80.

    CAS  PubMed  Google Scholar 

  62. Han F, Liu W, Xiao H, Dong Y, Sun L, Mao C, et al. High expression of SOX30 is associated with favorable survival in human lung adenocarcinoma. Sci Rep. 2015;5:13630.

    PubMed  PubMed Central  Google Scholar 

  63. Perez-Moreno P, Brambilla E, Thomas R, Soria JC. Squamous cell carcinoma of the lung: molecular subtypes and therapeutic opportunities. Clin Cancer Res. 2012;18:2443–51.

    CAS  PubMed  Google Scholar 

  64. Forbes SA, Bindal N, Bamford S, Cole C, Kok CY, Beare D, et al. COSMIC: mining complete cancer genomes in the catalogue of somatic mutations in cancer. Nucleic Acids Res. 2011;39:D945–50.

    CAS  PubMed  Google Scholar 

  65. Xiao D, Lu C, Zhu W, He Q, Li Y, Fu C, et al. Comparison of small biopsy specimens and surgical specimens for the detection of EGFR mutations and EML4-ALK in non-small-cell lung cancer. Oncotarget. 2016;7:59049–57.

    PubMed  PubMed Central  Google Scholar 

  66. Wang D, Sun H, Wei J, Cen B, DuBois RN. CXCL1 is critical for premetastatic niche formation and metastasis in colorectal cancer. Cancer Res. 2017;77:3655–65.

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Seifert L, Werba G, Tiwari S, Giao LyNN, Alothman S, Alqunaibit D, et al. The necrosome promotes pancreatic oncogenesis via CXCL1 and Mincle-induced immune suppression. Nature. 2016;532:245–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Gomez-Chou SB, Swidnicka-Siergiejko AK, Badi N, Chavez-Tomar M, Lesinski GB, Bekaii-Saab T, et al. Lipocalin-2 promotes pancreatic ductal adenocarcinoma by regulating inflammation in the tumor microenvironment. Cancer Res. 2017;77:2647–60.

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Jung M, Oren B, Mora J, Mertens C, Dziumbla S, Popp R, et al. Lipocalin 2 from macrophages stimulated by tumor cell-derived sphingosine 1-phosphate promotes lymphangiogenesis and tumor metastasis. Sci Signal. 2016;9:ra64.

    PubMed  Google Scholar 

  70. Jungnickel C, Schmidt LH, Bittigkoffer L, Wolf L, Wolf A, Ritzmann F, et al. IL-17C mediates the recruitment of tumor-associated neutrophils and lung tumor growth. Oncogene. 2017;36:4182–90.

    CAS  PubMed  Google Scholar 

  71. Coffelt SB, Kersten K, Doornebal CW, Weiden J, Vrijland K, Hau CS, et al. IL-17-producing gammadelta T cells and neutrophils conspire to promote breast cancer metastasis. Nature. 2015;522:345–48.

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Pang S, Lynn DA, Lo JY, Paek J, Curran SP. SKN-1 and Nrf2 couples proline catabolism with lipid metabolism during nutrient deprivation. Nature Commun. 2014;5:5048.

    CAS  Google Scholar 

  73. Tang H, Pang S. Proline catabolism modulates innate immunity in caenorhabditis elegans. Cell Rep. 2016;17:2837–44.

    CAS  PubMed  Google Scholar 

  74. Anest V, Hanson JL, Cogswell PC, Steinbrecher KA, Strahl BD, Baldwin AS. A nucleosomal function for IkappaB kinase-alpha in NF-kappaB-dependent gene expression. Nature. 2003;423:659–63.

    CAS  PubMed  Google Scholar 

  75. Bononi A, Yang H, Giorgi C, Patergnani S, Pellegrini L, Su M, et al. Germline BAP1 mutations induce a Warburg effect. Cell Death Differ. 2017;24:1694–704.

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Shi Y, Tao Y, Jiang Y, Xu Y, Yan B, Chen X, et al. Nuclear epidermal growth factor receptor interacts with transcriptional intermediary factor 2 to activate cyclin D1 gene expression triggered by the oncoprotein latent membrane protein 1. Carcinogenesis. 2012;33:1468–78.

    CAS  PubMed  Google Scholar 

  77. Mao C, Wang M, Qian B, Ouyang L, Shi Y, Liu N, et al. Aryl hydrocarbon receptor activated by benzo (a) pyrene promotes SMARCA6 expression in NSCLC. Am J Cancer Res. 2018;8:1214–27.

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Mao C, Wang X, Liu Y, Wang M, Yan B, Jiang Y, et al. A G3BP1-interacting lncRNA promotes ferroptosis and apoptosis in cancer via nuclear sequestration of p53. Cancer Res. 2018;78:3484–96.

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Shi Y, Liu N, Lai W, Yan B, Chen L, Liu S, et al. Nuclear EGFR-PKM2 axis induces cancer stem cell-like characteristics in irradiation-resistant cells. Cancer Lett. 2018;422:81–93.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Prof. Dangsheng Li (Deputy Editor-in-Chief, Cell Research, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China) and Prof. Teibang Kang (State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, No. 651 Dongfeng East Road, Guangzhou, 510060, China) very much for the kind suggestions.,

Funding

This work was supported by the National Natural Science Foundation of China [81872285 (YS), 81728014 (YT), 81672787 (YT), 81672991, and 81874139 (SL), 81672308 (XW), 81772496 (DX)]; the National Basic Research Program of China [2015CB553903 (YT)], the Overseas Expertize Introduction Project for Discipline Innovation (111 Project, No. 111-2-12), Hunan Provincial Key Area R&D Programs [2019SK2253 (XW)], the Fundamental Research Funds for the Central Universities [1502211723 (YL)], and Open projects of Key Laboratory of Carcinogenesis and Invasion, Ministry of Education (Central South University) [201805, (CC and YT)].

Author information

Authors and Affiliations

Authors

Contributions

YT, YS, QY, and SL designed/planned the study and wrote the paper. YL performed experiments using the three types of cells and analyzed data. YL performed MS measurements and analyzed data. CM, MW, and NL participated in writing the paper. OY and MW performed imaging analysis. OY and YL performed in vitro biochemical experiments. DX, XW, CC, YC, and YT participated in discussion of related experiments. SL, HT, and NL performed computational modeling. XD and XW acquired and analyzed clinical and experimental data. MW, YL, and OY performed experiments and analyzed data.

Corresponding authors

Correspondence to Ying Shi, Qin Yan or Yongguang Tao.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests. The authors declare no conflict of interest. This manuscript has been read and approved by all authors and is not under consideration for publication elsewhere.

Ethical approval

The ethics committee of Cancer Research Institute of Central South University has approved this study.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., Mao, C., Wang, M. et al. Cancer progression is mediated by proline catabolism in non-small cell lung cancer. Oncogene 39, 2358–2376 (2020). https://doi.org/10.1038/s41388-019-1151-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-019-1151-5

This article is cited by

Search

Quick links