Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

NER-factor DDB2 regulates HIF1α and hypoxia-response genes in HNSCC

Abstract

Cancers in the oral/head & neck region (HNSCC) are aggressive due to high incidence of recurrence and distant metastasis. One prominent feature of aggressive HNSCC is the presence of severely hypoxic regions in tumors and activation of hypoxia-inducible factors (HIFs). In this study, we report that the XPE gene product DDB2 (damaged DNA binding protein 2), a nucleotide excision repair protein, is upregulated by hypoxia. Moreover, DDB2 inhibits HIF1α in HNSCC cells. It inhibits HIF1α in both normoxia and hypoxia by reducing mRNA expression. Knockdown of DDB2 enhances the expression of angiogenic markers and promotes tumor growth in a xenograft model. We show that DDB2 binds to an upstream promoter element in the HIF1Α gene and promotes histone H3K9 trimethylation around the binding site by recruiting Suv39h1. Also, we provide evidence that DDB2 has a significant suppressive effect on expression of the endogenous markers of hypoxia that are also prognostic indicators in HNSCC. Together, these results describe a new mechanism of hypoxia regulation that opposes expression of HIF1Α mRNA and the hypoxia-response genes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Simon MC, Keith B. The role of oxygen availability in embryonic development and stem cell function. Nat Rev Mol Cell Biol. 2008;9:285–96.

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Semenza GL. Hypoxia-inducible factor 1: oxygen homeostasis and disease pathophysiology. Trends Mol Med. 2001;7:345–50.

    CAS  PubMed  Google Scholar 

  3. Iyer NV, Kotch LE, Agani F, Leung SW, Laughner E, Wenger RH, et al. Cellular and developmental control of O2 homeostasis by hypoxia-inducible factor 1 alpha. Genes Dev. 1998;12:149–62.

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Vaupel P, Briest S, Hockel M. Hypoxia in breast cancer: pathogenesis, characterization and biological/therapeutic implications. Wien Med Wochenschr. 2002;152:334–42.

    CAS  PubMed  Google Scholar 

  5. Vaupel P, Thews O, Hoeckel M. Treatment resistance of solid tumors: role of hypoxia and anemia. Med Oncol. 2001;18:243–59.

    CAS  PubMed  Google Scholar 

  6. Nowrousian MR. (Editor) Recombinant Human Erythropoietin (rhEPO) in clinical oncology: Scientific and clinical aspects of anemia in cancer. 2nd edition, Springer Wlen New York; 2008.

  7. Vaupel P, Kelleher DK, Hockel M. Oxygen status of malignant tumors: pathogenesis of hypoxia and significance for tumor therapy. Semin Oncol. 2001;28:29–35.

    CAS  PubMed  Google Scholar 

  8. Keith B, Simon MC. Hypoxia-inducible factors, stem cells, and cancer. Cell. 2007;129:465–72.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Koumenis C, Hammond E, Giaccia AJ. Tumor microenvironment and cellular stress: signaling, metabolism, imaging, and therapeutic targets. Preface. Adv Exp Med Biol 2014;772:v-viii.

  10. Sui H, Zhu L, Deng W, Li Q. Epithelial-mesenchymal transition and drug resistance: role, molecular mechanisms, and therapeutic strategies. Oncol Res Treat. 2014;37:584–9.

    CAS  PubMed  Google Scholar 

  11. Iyer AK, Singh A, Ganta S, Amiji MM. Role of integrated cancer nanomedicine in overcoming drug resistance. Adv drug Deliv Rev. 2013;65:1784–802.

    CAS  PubMed  Google Scholar 

  12. Wang GL, Jiang BH, Rue EA, Semenza GL. Hypoxia-inducible factor 1 is a basic-helix-loop-helix-PAS heterodimer regulated by cellular O2 tension. Proc Natl Acad Sci USA. 1995;92:5510–4.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Berra E, Richard DE, Gothie E, Pouyssegur J. HIF-1-dependent transcriptional activity is required for oxygen-mediated HIF-1alpha degradation. FEBS Lett. 2001;491:85–90.

    CAS  PubMed  Google Scholar 

  14. Radisky DC, Levy DD, Littlepage LE, Liu H, Nelson CM, Fata JE, et al. Rac1b and reactive oxygen species mediate MMP-3-induced EMT and genomic instability. Nature. 2005;436:123–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Waypa GB, Smith KA, Schumacker PT. O2 sensing, mitochondria and ROS signaling: the fog is lifting. Mol Asp Med. 2016;47-48:76–89.

    CAS  Google Scholar 

  16. Chandel NS, Maltepe E, Goldwasser E, Mathieu CE, Simon MC, Schumacker PT. Mitochondrial reactive oxygen species trigger hypoxia-induced transcription. Proc Natl Acad Sci USA. 1998;95:11715–20.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Pouyssegur J, Dayan F, Mazure NM. Hypoxia signalling in cancer and approaches to enforce tumour regression. Nature. 2006;441:437–43.

    CAS  PubMed  Google Scholar 

  18. Dames SA, Martinez-Yamout M, De Guzman RN, Dyson HJ, Wright PE. Structural basis for Hif-1 alpha /CBP recognition in the cellular hypoxic response. Proc Natl Acad Sci USA. 2002;99:5271–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Cam H, Easton JB, High A, Houghton PJ. mTORC1 signaling under hypoxic conditions is controlled by ATM-dependent phosphorylation of HIF-1alpha. Mol Cell. 2010;40:509–20.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Lim JH, Lee YM, Chun YS, Chen J, Kim JE, Park JW. Sirtuin 1 modulates cellular responses to hypoxia by deacetylating hypoxia-inducible factor 1alpha. Mol Cell. 2010;38:864–78.

    CAS  PubMed  Google Scholar 

  21. Yoo YG, Kong G, Lee MO. Metastasis-associated protein 1 enhances stability of hypoxia-inducible factor-1alpha protein by recruiting histone deacetylase 1. EMBO J. 2006;25:1231–41.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Cheng J, Kang X, Zhang S, Yeh ET. SUMO-specific protease 1 is essential for stabilization of HIF1αlpha during hypoxia. Cell. 2007;131:584–95.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Bae SH, Jeong JW, Park JA, Kim SH, Bae MK, Choi SJ, et al. Sumoylation increases HIF-1alpha stability and its transcriptional activity. Biochem Biophys Res Commun. 2004;324:394–400.

    CAS  PubMed  Google Scholar 

  24. Li F, Sonveaux P, Rabbani ZN, Liu S, Yan B, Huang Q, et al. Regulation of HIF-1alpha stability through S-nitrosylation. Mol Cell. 2007;26:63–74.

    PubMed  PubMed Central  Google Scholar 

  25. Ryu JH, Li SH, Park HS, Park JW, Lee B, Chun YS. Hypoxia-inducible factor alpha subunit stabilization by NEDD8 conjugation is reactive oxygen species-dependent. J Biol Chem. 2011;286:6963–70.

    CAS  PubMed  Google Scholar 

  26. Belaiba RS, Bonello S, Zahringer C, Schmidt S, Hess J, Kietzmann T, et al. Hypoxia up-regulates hypoxia-inducible factor-1alpha transcription by involving phosphatidylinositol 3-kinase and nuclear factor kappaB in pulmonary artery smooth muscle cells. Mol Biol Cell. 2007;18:4691–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Rius J, Guma M, Schachtrup C, Akassoglou K, Zinkernagel AS, Nizet V, et al. NF-kappaB links innate immunity to the hypoxic response through transcriptional regulation of HIF-1alpha. Nature. 2008;453:807–11.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Stoyanova T, Roy N, Kopanja D, Raychaudhuri P, Bagchi S. DDB2 (damaged-DNA binding protein 2) in nucleotide excision repair and DNA damage response. Cell Cycle. 2009;8:4067–71.

    CAS  PubMed  Google Scholar 

  29. Wittschieben BO, Iwai S, Wood RD. DDB1-DDB2 (xeroderma pigmentosum group E) protein complex recognizes a cyclobutane pyrimidine dimer, mismatches, apurinic/apyrimidinic sites, and compound lesions in DNA. J Biol Chem. 2005;280:39982–9.

    CAS  PubMed  Google Scholar 

  30. Wittschieben BO, Wood RD. DDB complexities. DNA repair. 2003;2:1065–9.

    CAS  PubMed  Google Scholar 

  31. Stoyanova T, Roy N, Bhattacharjee S, Kopanja D, Valli T, Bagchi S, et al. p21 cooperates with DDB2 protein in suppression of ultraviolet ray-induced skin malignancies. J Biol Chem. 2012;287:3019–28.

    CAS  PubMed  Google Scholar 

  32. Minig V, Kattan Z, van Beeumen J, Brunner E, Becuwe P. Identification of DDB2 protein as a transcriptional regulator of constitutive SOD2 gene expression in human breast cancer cells. J Biol Chem. 2009;284:14165–76.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Roy N, Bommi PV, Bhat UG, Bhattacharjee S, Elangovan I, Li J, et al. DDB2 suppresses epithelial-to-mesenchymal transition in colon cancer. Cancer Res. 2013;73:3771–82.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Zhao R, Han C, Eisenhauer E, Kroger J, Zhao W, Yu J, et al. DNA damage-binding complex recruits HDAC1 to repress Bcl-2 transcription in human ovarian cancer cells. Mol Cancer Res. 2014;12:370–80.

    CAS  PubMed  Google Scholar 

  35. Han C, Zhao R, Liu X, Srivastava A, Gong L, Mao H, et al. DDB2 suppresses tumorigenicity by limiting the cancer stem cell population in ovarian cancer. Mol Cancer Res. 2014;12:784–94.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Zhao R, Cui T, Han C, Zhang X, He J, Srivastava AK, et al. DDB2 modulates TGF-beta signal transduction in human ovarian cancer cells by downregulating NEDD4L. Nucleic Acids Res. 2015;43:7838–49.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Roy N, Elangovan I, Kopanja D, Bagchi S, Raychaudhuri P. Tumor regression by phenethyl isothiocyanate involves DDB2. Cancer Biol Ther. 2013;14:108–16.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Bommi PV, Ravindran S, Raychaudhuri P, Bagchi S. DDB2 regulates epithelial-to-mesenchymal transition (EMT) in oral/head and neck squamous cell carcinoma. Oncotarget. 2018;9:34708–18.

    PubMed  PubMed Central  Google Scholar 

  39. Roy N, Bagchi S, Raychaudhuri P. Damaged DNA binding protein 2 in reactive oxygen species (ROS) regulation and premature senescence. Int J Mol Sci. 2012;13:11012–26.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Semenza GL. Hypoxia, clonal selection, and the role of HIF-1 in tumor progression. Crit Rev Biochem Mol Biol. 2000;35:71–103.

    CAS  PubMed  Google Scholar 

  41. Ennen M, Klotz R, Touche N, Pinel S, Barbieux C, Besancenot V, et al. DDB2: a novel regulator of NF-kappaB and breast tumor invasion. Cancer Res. 2013;73:5040–52.

    CAS  PubMed  Google Scholar 

  42. Cheung KJ, Padmanaban V, Silvestri V, Schipper K, Cohen JD, Fairchild AN, et al. Polyclonal breast cancer metastases arise from collective dissemination of keratin 14-expressing tumor cell clusters. Proc Natl Acad Sci USA. 2016;113:E854–E863.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Sorensen BS, Knudsen A, Wittrup CF, Nielsen S, Aggerholm-Pedersen N, Busk M, et al. The usability of a 15-gene hypoxia classifier as a universal hypoxia profile in various cancer cell types. Radiother Oncol. 2015;116:346–51.

    PubMed  Google Scholar 

  44. Toustrup K, Sorensen BS, Metwally MA, Tramm T, Mortensen LS, Overgaard J, et al. Validation of a 15-gene hypoxia classifier in head and neck cancer for prospective use in clinical trials. Acta Oncol. 2016;55:1091–8.

    CAS  PubMed  Google Scholar 

  45. Parkin DM, Bray F, Ferlay J, Pisani P. Global cancer statistics, 2002. CA Cancer J Clin. 2005;55:74–108.

    PubMed  Google Scholar 

  46. Brizel DM, Sibley GS, Prosnitz LR, Scher RL, Dewhirst MW. Tumor hypoxia adversely affects the prognosis of carcinoma of the head and neck. Int J Radiat Oncol Biol Phys. 1997;38:285–9.

    CAS  PubMed  Google Scholar 

  47. Guzy RD, Hoyos B, Robin E, Chen H, Liu L, Mansfield KD, et al. Mitochondrial complex III is required for hypoxia-induced ROS production and cellular oxygen sensing. Cell Metab. 2005;1:401–8.

    CAS  PubMed  Google Scholar 

  48. Toustrup K, Sorensen BS, Nordsmark M, Busk M, Wiuf C, Alsner J, et al. Development of a hypoxia gene expression classifier with predictive impact for hypoxic modification of radiotherapy in head and neck cancer. Cancer Res. 2011;71:5923–31.

    CAS  PubMed  Google Scholar 

  49. Hoskin PJ, Sibtain A, Daley FM, Wilson GD. GLUT1 and CAIX as intrinsic markers of hypoxia in bladder cancer: relationship with vascularity and proliferation as predictors of outcome of ARCON. Br J Cancer. 2003;89:1290–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Overgaard J, Eriksen JG, Nordsmark M, Alsner J, Horsman MR, Danish H, et al. Plasma osteopontin, hypoxia, and response to the hypoxia sensitiser nimorazole in radiotherapy of head and neck cancer: results from the DAHANCA 5 randomised double-blind placebo-controlled trial. Lancet Oncol. 2005;6:757–64.

    CAS  PubMed  Google Scholar 

  51. Wykoff CC, Beasley NJ, Watson PH, Turner KJ, Pastorek J, Sibtain A, et al. Hypoxia-inducible expression of tumor-associated carbonic anhydrases. Cancer Res. 2000;60:7075–83.

    CAS  PubMed  Google Scholar 

  52. Albinger-Hegyi A, Stoeckli SJ, Schmid S, Storz M, Iotzova G, Probst-Hensch NM, et al. Lysyl oxidase expression is an independent marker of prognosis and a predictor of lymph node metastasis in oral and oropharyngeal squamous cell carcinoma (OSCC). Int J cancer. 2010;126:2653–62.

    CAS  PubMed  Google Scholar 

  53. Le QT, Harris J, Magliocco AM, Kong CS, Diaz R, Shin B, et al. Validation of lysyl oxidase as a prognostic marker for metastasis and survival in head and neck squamous cell carcinoma: radiation therapy oncology group trial 90-03. J Clin Oncol. 2009;27:4281–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Perez-Sayans M, Supuran CT, Pastorekova S, Suarez-Penaranda JM, Pilar GD, Barros-Angueira F, et al. The role of carbonic anhydrase IX in hypoxia control in OSCC. J Oral Pathol Med. 2013;42:1–8.

    CAS  PubMed  Google Scholar 

  55. McDonald PC, Dedhar S. Carbonic anhydrase IX (CAIX) as a mediator of hypoxia-induced stress response in cancer cells. Subcell Biochem. 2014;75:255–69.

    CAS  PubMed  Google Scholar 

  56. Erler JT, Bennewith KL, Nicolau M, Dornhofer N, Kong C, Le QT, et al. Lysyl oxidase is essential for hypoxia-induced metastasis. Nature. 2006;440:1222–6.

    CAS  PubMed  Google Scholar 

  57. Hayashido Y, Nakashima M, Urabe K, Yoshioka H, Yoshioka Y, Hamana T, et al. Role of stromal thrombospondin-1 in motility and proteolytic activity of oral squamous cell carcinoma cells. Int J Mol Med. 2003;12:447–52.

    CAS  PubMed  Google Scholar 

  58. Horiguchi H, Yamagata S, Rong Qian Z, Kagawa S, Sakashita N. Thrombospondin-1 is highly expressed in desmoplastic components of invasive ductal carcinoma of the breast and associated with lymph node metastasis. J Med Investig. 2013;60:91–96.

    Google Scholar 

  59. Jayachandran A, Anaka M, Prithviraj P, Hudson C, McKeown SJ, Lo PH, et al. Thrombospondin 1 promotes an aggressive phenotype through epithelial-to-mesenchymal transition in human melanoma. Oncotarget. 2014;5:5782–97.

    PubMed  PubMed Central  Google Scholar 

  60. Pal SK, Nguyen CT, Morita KI, Miki Y, Kayamori K, Yamaguchi A, et al. THBS1 is induced by TGFB1 in the cancer stroma and promotes invasion of oral squamous cell carcinoma. J Oral Pathol Med. 2016;45:730–9.

    CAS  PubMed  Google Scholar 

  61. Zhang SY, Hui LP, Li CY, Gao J, Cui ZS, Qiu XS. More expression of BDNF associates with lung squamous cell carcinoma and is critical to the proliferation and invasion of lung cancer cells. BMC Cancer. 2016;16:171.

    PubMed  PubMed Central  Google Scholar 

  62. Firlej V, Mathieu JR, Gilbert C, Lemonnier L, Nakhle J, Gallou-Kabani C, et al. Thrombospondin-1 triggers cell migration and development of advanced prostate tumors. Cancer Res. 2011;71:7649–58.

    CAS  PubMed  Google Scholar 

  63. Gandini NA, Fermento ME, Salomon DG, Blasco J, Patel V, Gutkind JS, et al. Nuclear localization of heme oxygenase-1 is associated with tumor progression of head and neck squamous cell carcinomas. Exp Mol Pathol. 2012;93:237–45.

    CAS  PubMed  Google Scholar 

  64. Huang S, Fantini D, Merrill BJ, Bagchi S, Guzman G, Raychaudhuri P. DDB2 is a novel regulator of wnt signaling in colon cancer. Cancer Res. 2017;77:6562–75.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank members of PR and SB Laboratory for helpful guidance during this study. We especially thank Caius Coretchi for his technical assistance as summer research student in the College of Dentistry.

Funding

This work was supported by the grants from National Cancer Institute (NCI) to SB (R03CA227308) and the multi-PI grant from the National Cancer Institute (NCI) to PR and SB (R01CA156164).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Pradip Raychaudhuri or Srilata Bagchi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bommi, P.V., Chand, V., Mukhopadhyay, N.K. et al. NER-factor DDB2 regulates HIF1α and hypoxia-response genes in HNSCC. Oncogene 39, 1784–1796 (2020). https://doi.org/10.1038/s41388-019-1105-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-019-1105-y

This article is cited by

Search

Quick links