Chemical complementarity between immune receptor CDR3s and IDH1 mutants correlates with increased survival for lower grade glioma


Focusing on highly specific aspects of the immune response is likely to answer a number of basic questions, and in some cases even resolve basic contradictions, in cancer immunology. For example, there are many cases, where chronic inflammation is associated with cancer development, and many other cases where an immune response represents an anticancer process. In this study, using bioinformatics algorithms, we examined the chemical relationships between the amino acid sequences of the complementarity-determining region-3 (CDR3) represented by immune receptors associated with lower grade glioma and isocitrate dehydrogenase-1 (IDH1) mutants. In particular, we developed a chemical complementarity scoring approach to classify tumors based on the complementarity of CDR3s and mutant IDH1 amino acids, relying on net charge per residue and hydropathy parameters. There was a strong correlation between the increased survival in low-grade glioma (LGG) and complementarity of IDH1 mutants to the CDR3 domain of the T-cell receptor beta chain (TRB). Similar results were obtained for TRB CDR3s and NRAS mutants in melanoma. Furthermore, the clear connection between increased survival rates and immune receptor-IDH1 mutant complementarities may also, partially, explain the better LGG prognosis for patients with IDH1 mutants.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Code availability

SOM and


  1. 1.

    Berghoff AS, Kiesel B, Widhalm G, Wilhelm D, Rajky O, Kurscheid S, et al. Correlation of immune phenotype with IDH mutation in diffuse glioma. Neuro Oncol. 2017;19:1460–8.

    CAS  Article  Google Scholar 

  2. 2.

    Chobrutskiy BI, Zaman S, Tong WL, Diviney A, Blanck G. Recovery of T-cell receptor V(D)J recombination reads from lower grade glioma exome files correlates with reduced survival and advanced cancer grade. J Neurooncol. 2018;140:697–704.

    CAS  Article  Google Scholar 

  3. 3.

    Davidson TB, Lee AH, Hsu M, Sedighim S, Orpilla J, Treger J, et al. Expression of PD-1 by T cells in malignant glioma patients reflects exhaustion and activation. Clin Cancer Res: Off J Am Assoc Cancer Res. 2018;25:1913–22.

    Article  Google Scholar 

  4. 4.

    Han S, Zhang C, Li Q, Dong J, Liu Y, Huang Y, et al. Tumour-infiltrating CD4(+) and CD8(+) lymphocytes as predictors of clinical outcome in glioma. Br J cancer. 2014;110:2560–8.

    CAS  Article  Google Scholar 

  5. 5.

    Cohen AL, Holmen SL, Colman H. IDH1 and IDH2 mutations in gliomas. Curr Neurol Neurosci Rep. 2013;13:345.

    Article  Google Scholar 

  6. 6.

    Mutant IDH1 is an effective immunotherapeutic target for Glioma Cancer Discov September 1 2014;4(9), OF13-OF13,

  7. 7.

    Schumacher T, Bunse L, Pusch S, Sahm F, Wiestler B, Quandt J, et al. A vaccine targeting mutant IDH1 induces antitumour immunity. Nature. 2014;512:324–7.

    CAS  Article  Google Scholar 

  8. 8.

    Dutoit V, Migliorini D, Ranzanici G, Marinari E, Widmer V, Lobrinus JA, et al. Antigenic expression and spontaneous immune responses support the use of a selected peptide set from the IMA950 glioblastoma vaccine for immunotherapy of grade II and III glioma. Oncoimmunology. 2018;7:e1391972.

    Article  Google Scholar 

  9. 9.

    Kimura H, Cook R, Meek K, Umeda M, Ball E, Capra JD, et al. Sequences of the VH and VL regions of murine monoclonal antibodies against 3-fucosyllactosamine. J Immunol. 1988;140:1212–7.

    CAS  PubMed  Google Scholar 

  10. 10.

    Tsuchiya Y, Namiuchi Y, Wako H, Tsurui H. A study of CDR3 loop dynamics reveals distinct mechanisms of peptide recognition by T-cell receptors exhibiting different levels of cross-reactivity. Immunology. 2018;153:466–78.

    CAS  Article  Google Scholar 

  11. 11.

    Zhou CY, Wang RN, Wen Q, He WT, Zhang SM, Du XL, et al. Alanine mutagenesis in the complementarity determining region 3 of the MTB and HIV-1 peptide-bispecific T cell receptor beta chain affects ligand recognition. Front Immunol. 2017;8:983.

    Article  Google Scholar 

  12. 12.

    Chobrutskiy BI, Zaman S, Diviney A, Mihyu MM, Blanck G. T-cell receptor-alpha CDR3 domain chemical features correlate with survival rates in bladder cancer. J cancer Res Clin Oncol. 2018;145:615–23.

    Article  Google Scholar 

  13. 13.

    Gros A, Parkhurst MR, Tran E, Pasetto A, Robbins PF, Ilyas S, et al. Prospective identification of neoantigen-specific lymphocytes in the peripheral blood of melanoma patients. Nat Med. 2016;22:433–8.

    CAS  Article  Google Scholar 

  14. 14.

    Roca AM, Chobrutskiy BI, Callahan BM, Blanck G. T-cell receptor V and J usage paired with specific HLA alleles associates with distinct cervical cancer survival rates. Hum Immunol. 2019;80:237–42.

    CAS  Article  Google Scholar 

  15. 15.

    Holehouse AS, Das RK, Ahad JN, Richardson MO, Pappu RV. CIDER: resources to analyze sequence-ensemble relationships of intrinsically disordered proteins. Biophys J. 2017;112:16–21.

    CAS  Article  Google Scholar 

  16. 16.

    Tong WL, Callahan BM, Tu YN, Zaman S, Chobrutskiy BI, Blanck G. Immune receptor recombinations from breast cancer exome files, independently and in combination with specific HLA alleles, correlate with better survival rates. Breast cancer Res Treat. 2018;173:167–77.

    Article  Google Scholar 

  17. 17.

    Zaman S, Chobrutskiy BI, Patel JS, Callahan BM, Tong WL, Mihyu MM, et al. MMP7 sensitivity of mutant ECM proteins: An indicator of melanoma survival rates and T-cell infiltration. Clin Biochem. 2018;63:85–91.

    Article  Google Scholar 

  18. 18.

    Zaman S, Chobrutskiy BI, Patel JS, Callahan BM, Tong WL, Blanck G. Mutant cytoskeletal and ECM peptides sensitive to the ST14 protease are associated with a worse outcome for glioblastoma multiforme. Biochemical biophysical Res Commun. 2018;503:2218–25.

    CAS  Article  Google Scholar 

  19. 19.

    Chobrutskiy BI, Zaman S, Tong WL, Diviney A, Blanck G. Recovery of T-cell receptor V(D)J recombination reads from lower grade glioma exome files correlates with reduced survival and advanced cancer grade. J Neurooncol. 2018;140:697–704.

    CAS  Article  Google Scholar 

  20. 20.

    Chen WW, Balaj L, Liau LM, Samuels ML, Kotsopoulos SK, Maguire CA, et al. BEAMing and droplet digital PCR analysis of mutant IDH1 mRNA in glioma patient serum and cerebrospinal fluid extracellular vesicles. Mol Ther Nucleic Acids. 2013;2:e109.

    Article  Google Scholar 

  21. 21.

    Kiviniemi A, Gardberg M, Frantzen J, Parkkola R, Vuorinen V, Pesola M, et al. Serum levels of GFAP and EGFR in primary and recurrent high-grade gliomas: correlation to tumor volume, molecular markers, and progression-free survival. J Neurooncol. 2015;124:237–45.

    CAS  Article  Google Scholar 

  22. 22.

    Syed P, Gupta S, Choudhary S, Pandala NG, Atak A, Richharia A, et al. Autoantibody profiling of glioma serum samples to identify biomarkers using human proteome arrays. Sci Rep. 2015;5:13895.

    CAS  Article  Google Scholar 

  23. 23.

    Zhang J, Xu Z, Yu L, Chen M, Li K. Assessment of the potential diagnostic value of serum p53 antibody for cancer: a meta-analysis. PloS one. 2014;9:e99255.

    Article  Google Scholar 

  24. 24.

    Thorsson V, Gibbs DL, Brown SD, Wolf D, Bortone DS, Ou Yang TH, et al. The immune landscape of cancer. Immunity. 2018;48:812–30 e814.

    CAS  Article  Google Scholar 

  25. 25.

    Leu S, von Felten S, Frank S, Vassella E, Vajtai I, Taylor E, et al. IDH/MGMT-driven molecular classification of low-grade glioma is a strong predictor for long-term survival. Neuro Oncol. 2013;15:469–79.

    CAS  Article  Google Scholar 

  26. 26.

    Metellus P, Coulibaly B, Colin C, de Paula AM, Vasiljevic A, Taieb D, et al. Absence of IDH mutation identifies a novel radiologic and molecular subtype of WHO grade II gliomas with dismal prognosis. Acta Neuropathol. 2010;120:719–29.

    Article  Google Scholar 

  27. 27.

    Mauro JA, Blanck G. Functionally distinct gene classes as bigger or smaller transcription factor traps: a possible stochastic component to sequential gene expression programs in cancer. Gene. 2014;536:398–406.

    CAS  Article  Google Scholar 

  28. 28.

    Mauro JA, Butler SN, Ramsamooj M, Blanck G. Copy number loss or silencing of apoptosis-effector genes in cancer. Gene. 2015;554:50–57.

    CAS  Article  Google Scholar 

  29. 29.

    Mauro JA, Yavorski JM, Blanck G. Stratifying melanoma and breast cancer TCGA datasets on the basis of the CNV of transcription factor binding sites common to proliferation- and apoptosis-effector genes. Gene. 2017;614:37–48.

    CAS  Article  Google Scholar 

  30. 30.

    Fisler DA, Sikaria D, Yavorski JM, Tu YN, Blanck G. Elucidating feed-forward apoptosis signatures in breast cancer datasets: Higher FOS expression associated with a better outcome. Oncol Lett. 2018;16:2757–63.

    PubMed  PubMed Central  Google Scholar 

  31. 31.

    Sikaria D, Tu YN, Fisler DA, Mauro JA, Blanck G. Identification of specific feed-forward apoptosis mechanisms and associated higher survival rates for low grade glioma and lung squamous cell carcinoma. J cancer Res Clin Oncol. 2018;144:459–68.

    Article  Google Scholar 

  32. 32.

    Zaman S, Chobrutskiy BI, Sikaria D, Blanck G. MAPT (Tau) expression is a biomarker for an increased rate of survival for lowgrade glioma. Oncol Rep. 2019;41:1359–66.

    CAS  PubMed  Google Scholar 

  33. 33.

    Chen G, Yang X, Ko A, Sun X, Gao M, Zhang Y, et al. Sequence and structural analyses reveal distinct and highly diverse human CD8(+) TCR repertoires to immunodominant viral antigens. Cell Rep. 2017;19:569–83.

    CAS  Article  Google Scholar 

  34. 34.

    Yin Q, Tan H, Chen S, Yang L, Ye J, Li Y. Characterization of conserved CDR3 sequence of TCR alpha- and beta-chain genes in peripheral blood T-cells from patients with diffuse large B-cell lymphoma. Hematology. 2010;15:48–57.

    CAS  Article  Google Scholar 

  35. 35.

    You Z, Shi XB, DuRaine G, Haudenschild D, Tepper CG, Lo SH, et al. Interleukin-17 receptor-like gene is a novel antiapoptotic gene highly expressed in androgen-independent prostate cancer. Cancer Res. 2006;66:175–83.

    CAS  Article  Google Scholar 

Download references


Authors thank USF research computing and the taxpayers of the State of Florida. BIC, SZ, SF, MY and AD were recipients of USF Morsani College of Medicine RISE fellowships.

Author information



Corresponding author

Correspondence to George Blanck.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Chobrutskiy, B.I., Yeagley, M., Tipping, P. et al. Chemical complementarity between immune receptor CDR3s and IDH1 mutants correlates with increased survival for lower grade glioma. Oncogene 39, 1773–1783 (2020).

Download citation