Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Aneuploidy-inducing gene knockdowns overlap with cancer mutations and identify Orp3 as a B-cell lymphoma suppressor

Abstract

Aneuploidy can instigate tumorigenesis. However, mutations in genes that control chromosome segregation are rare in human tumors as these mutations reduce cell fitness. Screening experiments indicate that the knockdown of multiple classes of genes that are not directly involved in chromosome segregation can lead to aneuploidy induction. The possible contribution of these genes to cancer formation remains yet to be defined. Here we identified gene knockdowns that lead to an increase in aneuploidy in checkpoint-deficient human cancer cells. Computational analysis revealed that the identified genes overlap with recurrent mutations in human cancers. The knockdown of the three strongest selected candidate genes (ORP3, GJB3, and RXFP1) enhances the malignant transformation of human fibroblasts in culture. Furthermore, the knockout of Orp3 results in an aberrant expansion of lymphoid progenitor cells and a high penetrance formation of chromosomal instable, pauci-clonal B-cell lymphoma in aging mice. At pre-tumorous stages, lymphoid cells from the animals exhibit deregulated phospholipid metabolism and an aberrant induction of proliferation regulating pathways associating with increased aneuploidy in hematopoietic progenitor cells. Together, these results support the concept that aneuploidy-inducing gene deficiencies contribute to cellular transformation and carcinogenesis involving the deregulation of various molecular processes such as lipid metabolism, proliferation, and cell survival.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Magnuson T, Debrot S, Dimpfl J, Zweig A, Zamora T, Epstein CJ. The early lethality of autosomal monosomy in the mouse. J Exp Zool. 1985;236:353–60.

    CAS  PubMed  Google Scholar 

  2. Segal DJ, McCoy EE. Studies on Down’s syndrome in tissue culture. I. Growth rates and protein contents of fibroblast cultures. J Cell Physiol. 1974;83:85–90.

    CAS  PubMed  Google Scholar 

  3. Williams BR, Prabhu VR, Hunter KE, Glazier CM, Whittaker CA, Housman DE, et al. Aneuploidy affects proliferation and spontaneous immortalization in mammalian cells. Science. 2008;322:703–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Boveri T. Concerning the origin of malignant tumours byTheodor Boveri. Translated and annotated by Henry Harris. J Cell Sci. 2008;121(Suppl 1):1–84.

    PubMed  Google Scholar 

  5. Gordon DJ, Resio B, Pellman D. Causes and consequences of aneuploidy in cancer. Nat Rev Genet. 2012;13:189–203.

    CAS  PubMed  Google Scholar 

  6. Passerini V, Ozeri-Galai E, de Pagter MS, Donnelly N, Schmalbrock S, Kloosterman WP, et al. The presence of extra chromosomes leads to genomic instability. Nat Commun. 2016;7:10754.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Meena JK, Cerutti A, Beichler C, Morita Y, Bruhn C, Kumar M, et al. Telomerase abrogates aneuploidy-induced telomere replication stress, senescence and cell depletion. EMBO J. 2015;34:1371–84.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Baker DJ, Jin F, Jeganathan KB, van Deursen JM. Whole chromosome instability caused by Bub1 insufficiency drives tumorigenesis through tumor suppressor gene loss of heterozygosity. Cancer Cell. 2009;16:475–86.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Li M, Fang X, Baker DJ, Guo L, Gao X, Wei Z, et al. The ATM-p53 pathway suppresses aneuploidy-induced tumorigenesis. Proc Natl Acad Sci USA. 2010;107:14188–93.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Li M, Fang X, Wei Z, York JP, Zhang P. Loss of spindle assembly checkpoint-mediated inhibition of Cdc20 promotes tumorigenesis in mice. J Cell Biol. 2009;185:983–94.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Shen KC, Heng H, Wang Y, Lu S, Liu G, Deng CX, et al. ATM and p21 cooperate to suppress aneuploidy and subsequent tumor development. Cancer Res. 2005;65:8747–53.

    CAS  PubMed  Google Scholar 

  12. Conery AR, Harlow E. High-throughput screens in diploid cells identify factors that contribute to the acquisition of chromosomal instability. Proc Natl Acad Sci USA. 2010;107:15455–60.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Duijf PH, Benezra R. The cancer biology of whole-chromosome instability. Oncogene. 2013;32:4727–36.

    CAS  PubMed  Google Scholar 

  14. Orr B, Compton DA. A double-edged sword: how oncogenes and tumor suppressor genes can contribute to chromosomal instability. Front Oncol. 2013;3:164.

    PubMed  PubMed Central  Google Scholar 

  15. Rudolph KL, Millard M, Bosenberg MW, DePinho RA. Telomere dysfunction and evolution of intestinal carcinoma in mice and humans. Nat Genet. 2001;28:155–9.

    CAS  PubMed  Google Scholar 

  16. Carneiro MC, Henriques CM, Nabais J, Ferreira T, Carvalho T, Ferreira MG. Short telomeres in key tissues initiate local and systemic aging in zebrafish. PLOS Genet. 2016;12:e1005798.

    PubMed  PubMed Central  Google Scholar 

  17. Gunes C, Wezel F, Southgate J, Bolenz C. Implications of TERT promoter mutations and telomerase activity in urothelial carcinogenesis. Nat Rev Urol. 2018;15:386–93.

    PubMed  Google Scholar 

  18. Hell MP, Duda M, Weber TC, Moch H, Krek W. Tumor suppressor VHL functions in the control of mitotic fidelity. Cancer Res. 2014;74:2422–31.

    CAS  PubMed  Google Scholar 

  19. Richard G, Smith LE, Bailey RA, Itin P, Hohl D, Epstein EH Jr., et al. Mutations in the human connexin gene GJB3 cause erythrokeratodermia variabilis. Nat Genet. 1998;20:366–9.

    CAS  PubMed  Google Scholar 

  20. Bejarano E, Yuste A, Patel B, Stout RF Jr., Spray DC, Cuervo AM. Connexins modulate autophagosome biogenesis. Nat Cell Biol. 2014;16:401–14.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Holubcova Z, Blayney M, Elder K, Schuh M. Human oocytes. Error-prone chromosome-mediated spindle assembly favors chromosome segregation defects in human oocytes. Science. 2015;348:1143–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Hahn WC, Counter CM, Lundberg AS, Beijersbergen RL, Brooks MW, Weinberg RA. Creation of human tumour cells with defined genetic elements. Nature. 1999;400:464–8.

    CAS  PubMed  Google Scholar 

  23. Hahn WC, Dessain SK, Brooks MW, King JE, Elenbaas B, Sabatini DM, et al. Enumeration of the simian virus 40 early region elements necessary for human cell transformation. Mol Cell Biol. 2002;22:2111–23.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Lehto M, Mayranpaa MI, Pellinen T, Ihalmo P, Lehtonen S, Kovanen PT, et al. The R-Ras interaction partner ORP3 regulates cell adhesion. J Cell Sci. 2008;121(Pt 5):695–705.

    CAS  PubMed  Google Scholar 

  25. Martins VC, Busch K, Juraeva D, Blum C, Ludwig C, Rasche V, et al. Cell competition is a tumour suppressor mechanism in the thymus. Nature. 2014;509:465–70.

    CAS  PubMed  Google Scholar 

  26. Barth TFE, Kraus JM, Lausser L, Flossbach L, Schulte L, Holzmann K, et al. Comparative gene-expression profiling of the large cell variant of gastrointestinal marginal-zone B-cell lymphoma. Sci Rep. 2017;7:5963.

    PubMed  PubMed Central  Google Scholar 

  27. Weber-Boyvat M, Kentala H, Lilja J, Vihervaara T, Hanninen R, Zhou Y, et al. OSBP-related protein 3 (ORP3) coupling with VAMP-associated protein A regulates R-Ras activity. Exp Cell Res. 2015;331:278–91.

    CAS  PubMed  Google Scholar 

  28. Raychaudhuri S, Prinz WA. The diverse functions of oxysterol-binding proteins. Annu Rev Cell Developmental Biol. 2010;26:157–77.

    CAS  Google Scholar 

  29. Wang PY, Weng J, Anderson RG. OSBP is a cholesterol-regulated scaffolding protein in control of ERK 1/2 activation. Science. 2005;307:1472–6.

    CAS  PubMed  Google Scholar 

  30. Du X, Turner N, Yang H. The role of oxysterol-binding protein and its related proteins in cancer. Semin Cell Dev Biol. 2018;81:149–53.

    CAS  PubMed  Google Scholar 

  31. Patel D, Witt SN. Ethanolamine and phosphatidylethanolamine: partners in health and disease. Oxid Med Cell Longev. 2017;2017:4829180.

    PubMed  PubMed Central  Google Scholar 

  32. Thapa N, Tan X, Choi S, Lambert PF, Rapraeger AC, Anderson RA. The hidden conundrum of phosphoinositide signaling in cancer. Trends Cancer. 2016;2:378–90.

    PubMed  PubMed Central  Google Scholar 

  33. Lehto M, Tienari J, Lehtonen S, Lehtonen E, Olkkonen VM. Subfamily III of mammalian oxysterol-binding protein (OSBP) homologues: the expression and intracellular localization of ORP3, ORP6, and ORP7. Cell Tissue Res. 2004;315:39–57.

    CAS  PubMed  Google Scholar 

  34. Carricaburu V, Fournier B. Phosphoinositide fatty acids regulate phosphatidylinositol 5-kinase, phospholipase C and protein kinase C activities. Eur J Biochem. 2001;268:1238–49.

    CAS  PubMed  Google Scholar 

  35. Abdelbaset-Ismail A, Cymer M, Borkowska-Rzeszotek S, Brzezniakiewicz-Janus K, Rameshwar P, Kakar SS, et al. Bioactive phospholipids enhance migration and adhesion of human leukemic cells by inhibiting heme oxygenase 1 (HO-1) and inducible nitric oxygenase synthase (iNOS) in a p38 MAPK-dependent manner. Stem Cell Rev. 2019;15:139–54.

    Google Scholar 

  36. Deshpande I, Liang J, Hedeen D, Roberts KJ, Zhang Y, Ha B, et al. Smoothened stimulation by membrane sterols drives Hedgehog pathway activity. Nature. 2019;571:284–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Tang YC, Amon A. Gene copy-number alterations: a cost-benefit analysis. Cell. 2013;152:394–405.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Davoli T, Xu AW, Mengwasser KE, Sack LM, Yoon JC, Park PJ, et al. Cumulative haploinsufficiency and triplosensitivity drive aneuploidy patterns and shape the cancer genome. Cell. 2013;155:948–62.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Zuber J, Shi JW, Wang E, Rappaport AR, Herrmann H, Sison EA, et al. RNAi screen identifies Brd4 as a therapeutic target in acute myeloid leukaemia. Nature. 2011;478:524–U124.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Petzoldt JL, Leigh IM, Duffy PG, Sexton C, Masters JR. Immortalisation of human urothelial cells. Urol Res. 1995;23:377–80.

    CAS  PubMed  Google Scholar 

  41. Skarnes WC, Rosen B, West AP, Koutsourakis M, Bushell W, Iyer V, et al. A conditional knockout resource for the genome-wide study of mouse gene function. Nature. 2011;474:337–42.

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Kaftanovskaya EM, Huang Z, Lopez C, Conrad K, Agoulnik AI. Conditional deletion of the relaxin receptor gene in cells of smooth muscle lineage affects lower reproductive tract in pregnant mice. Biol Reprod. 2015;92:91.

    PubMed  PubMed Central  Google Scholar 

  43. Pfaffl MW. A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res. 2001;29:e45.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Ema H, Morita Y, Yamazaki S, Matsubara A, Seita J, Tadokoro Y, et al. Adult mouse hematopoietic stem cells: purification and single-cell assays. Nat Protoc. 2006;1:2979–87.

    CAS  PubMed  Google Scholar 

  45. Fujimura S, Xing Y, Takeya M, Yamashita Y, Ohshima K, Kuwahara K, et al. Increased expression of germinal center-associated nuclear protein RNA-primase is associated with lymphomagenesis. Cancer Res. 2005;65:5925–34.

    CAS  PubMed  Google Scholar 

  46. Cattoretti G, Pasqualucci L, Ballon G, Tam W, Nandula SV, Shen Q. et al. Deregulated BCL6 expression recapitulates the pathogenesis of human diffuse large B cell lymphomas in mice. Cancer Cell. 2005;7:445–55.

    CAS  PubMed  Google Scholar 

  47. Begus-Nahrmann Y, Lechel A, Obenauf AC, Nalapareddy K, Peit E, Hoffmann E, et al. p53 deletion impairs clearance of chromosomal-instable stem cells in aging telomere-dysfunctional mice. Nat Genet. 2009;41:1138–43.

    CAS  PubMed  Google Scholar 

  48. Koeberle A, Shindou H, Harayama T, Shimizu T. Role of lysophosphatidic acid acyltransferase 3 for the supply of highly polyunsaturated fatty acids in TM4 Sertoli cells. FASEB J. 2010;24:4929–38.

    CAS  PubMed  Google Scholar 

  49. Koeberle A, Shindou H, Koeberle SC, Laufer SA, Shimizu T, Werz O. Arachidonoyl-phosphatidylcholine oscillates during the cell cycle and counteracts proliferation by suppressing Akt membrane binding. Proc Natl Acad Sci USA. 2013;110:2546–51.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the Erich und Gertrud Roggenbuck Stiftung and Deutsche Krebshilfe (C. Günes, grant 10–2086-Gü 2), the European Union (advanced ERC grant to K. L. Rudolph, grant 323136), and the German Science Foundation (DFG, grants: SFB 1074 Projekt Z1 and GRK 2254 HEIST to H.A. Kestler). A.K. was supported by a Strategy and Innovation Grant from the Free State of Thuringia (41–5507–2016) and the Leibniz ScienceCampus InfectoOptics (SAS-2015-HKI-LWC). The FLI Core Facilities; Flow Cytometry, Histology, S2 laboratory, and Mouse facilities are gratefully acknowledged. We would like to thank the members of the K.L. Rudolph laboratory for helpful support. We thank Lars Zender and Torsten Wüstefeld for the cooperation in providing the lentiviral shRNA library targeting human cells and deep sequencing expertize. We also thank Sabrina Eichwald and Michaela Eggel for technical support and Lucien Frappart for his help with the histological evaluation of the xenograft mouse tumors. We acknowledge the Leibniz Graduate School on Ageing and Age-Related Diseases (LGSA), the government of Kenya and the Federal Government of Germany for financing S.N.N. through DAAD/NACOSTI (present NRF) scholarship

Author information

Authors and Affiliations

Authors

Contributions

Conception and design (CG, HAK, and KLR); Acquisition of data (CG, SNN, JKM, MK, AL, SFK, AG, AA, OO, CH); Analysis and interpretation of data (CG, KLR, HAK, SNN, JK, JKM, UK, AK, AG, FL, FW, CB); Writing of the manuscript (SNN, CG, HAK, and KLR). All the authors read and approved the final manuscript.

Corresponding authors

Correspondence to Hans A. Kestler, Cagatay Günes or K. Lenhard Rudolph.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Njeru, S.N., Kraus, J., Meena, J.K. et al. Aneuploidy-inducing gene knockdowns overlap with cancer mutations and identify Orp3 as a B-cell lymphoma suppressor. Oncogene 39, 1445–1465 (2020). https://doi.org/10.1038/s41388-019-1073-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-019-1073-2

This article is cited by

Search

Quick links