Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

TFAP2C regulates carbonic anhydrase XII in human breast cancer

Abstract

The expression of carbonic anhydrase XII (CA12) is associated with the expression of estrogen receptor alpha (ERα) in breast cancer and is linked to a good prognosis with a lower risk of metastasis. Transcription Factor Activator Protein 2γ (TFAP2C, AP-2γ) governs luminal breast cancer phenotype through direct and indirect regulation of ERα and ERα-associated genes, GATA3, FOXA1, EGFR, CDH1, DSP, KRT7, FBP1, MYB, RET, KRT8, MUC1, and ERBB2—genes which are responsible for the luminal signature in breast cancer. Herein, utilizing chromatin immunoprecipitation and direct sequencing (ChIP-seq), we show that CA12 is regulated by AP-2γ through binding with its promoter region in luminal breast cancer cell lines and indirectly through a distal estrogen-responsive region in ERα-positive cell lines by upregulation of ERα. CA12 is transcriptionally silenced in basal breast cancer cell lines through histone deacetylation and CpG methylation of the promoter region and can be re-activated with Trichostatin A (histone deacetylase inhibitor) and/or 5-aza-dC (an inhibitor of DNA methylation). Strong concordance in co-expression of CA12 and ESR1 (R2 = 0.1128, p = 0486) and TFAP2C (R2 = 0.1823, p = 0.0105) was found using a panel of primary breast tumor samples (n = 35), supporting a synergetic role of AP-2γ and ERα in activation of CA12. Our results highlight the essential role of AP-2γ in maintaining the luminal breast cancer phenotype and provide evidence that epigenetic mechanisms silence luminal gene expression in the basal phenotype. Additional studies to decipher mechanisms that drive epigenetic silencing of AP-2γ target genes are a critical area for further research.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. U.S. Cancer Statistics Working Group. U.S. Cancer Statistics Data Visualizations Tool, based on November 2017 submission data (1999–2015). U.S. Department of Health and Human Services, Centers for Disease Control and Prevention and National Cancer Institute; www.cdc.gov/cancer/dataviz. 2018.

  2. Masood S. Breast cancer subtypes: morphologic and biologic characterization. Women’s Health. 2016;12:103–19. https://doi.org/10.2217/whe.15.99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Sorlie T, Perou CM, Tibshirani R, Aas T, Geisler S, Johnsen H, et al. Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proc Natl Acad Sci USA. 2001;98:10869–74.

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Supuran CT. Carbonic anhydrases—an overview. Curr Pharm Des. 2008;14:603–14.

    CAS  PubMed  Google Scholar 

  5. Tashian RE. The carbonic anhydrases: widening perspectives on their evolution, expression and function. Bioessays. 1989;10:186–92.

    CAS  PubMed  Google Scholar 

  6. Sly WS, Hu PY. Human carbonic anhydrases and carbonic anhydrase deficiencies. Annu Rev Biochem. 1995;64:375–401.

    CAS  PubMed  Google Scholar 

  7. Parkkila S, Parkkila AK, Saarnio J, Kivela J, Karttunen TJ, Kaunisto K, et al. Expression of the membrane-associated carbonic anhydrase isozyme XII in the human kidney and renal tumors. J Histochem Cytochem. 2000;48:1601–8.

    CAS  PubMed  Google Scholar 

  8. Ilie MI, Hofman V, Ortholan C, Ammadi RE, Bonnetaud C, Havet K, et al. Overexpression of carbonic anhydrase XII in tissues from resectable non-small cell lung cancers is a biomarker of good prognosis. Int J Cancer. 2010;128:1614–23.

    PubMed  Google Scholar 

  9. Kivela A, Parkkila S, Saarnio J, Karttunen TJ, Kivela J, Parkkila AK, et al. Expression of a novel transmembrane carbonic anhydrase isozyme XII in normal human gut and colorectal tumors. Am J Pathol. 2000;156:577–84.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Nordfors K, Haapasalo J, Korja M, Niemelä A, Laine J, Parkkila AK, et al. The tumour-associated carbonic anhydrases CA II, CA IX and CA XII in a group of medulloblastomas and supratentorial primitive neuroectodermal tumours: an association of CA IX with poor prognosis. BMC Cancer. 2010;10:148.

    PubMed  PubMed Central  Google Scholar 

  11. Hynninen P, Vaskivuo L, Saarnio J, Haapasalo H, Kivela J, Pastoreková S, et al. Expression of transmembrane carbonic anhydrases IX and XII in ovarian tumours. Histopathology. 2006;49:594–602.

    CAS  PubMed  Google Scholar 

  12. Wykoff CC, Beasley N, Watson PH, Campo L, Chia SK, English R, et al. Expression of the hypoxia-inducible and tumorassociated carbonic anhydrases in ductal carcinoma in situ of the breast. Am J Pathol. 2001;158:1011–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Haapasalo J, Hilvo M, Nordfors K, Haapasalo H, Parkkila S, Hyrskyluoto A, et al. Identification of an alternatively spliced isoform of carbonic anhydrase XII in diffusely infiltrating astrocytic gliomas. Neuro Oncol. 2008;10:131–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Watson PH, Chia SK, Wykoff CC, Han C, Leek RD, Sly WS, et al. Carbonic anhydrase XII is a marker of good prognosis in invasive breast carcinoma. Br J Cancer. 2003;88:1065–70.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Ilie MI, Hofman V, Ortholan C, Ammadi RE, Bonnetaud C, Havet K, et al. Overexpression of carbonic anhydrase XII in tissues from resectable non-small cell lung cancers is a biomarker of good prognosis. Int J Cancer. 2010;128:1614–23.

    PubMed  Google Scholar 

  16. Kivela AJ, Parkkila S, Saarnio J, Karttunen TJ, Kivela J, Parkkila AK, et al. Expression of von Hippel-Lindau tumor suppressor and tumor-associated carbonic anhydrases IX and XII in normal and neoplastic colorectal mucosa. World J Gastroenterol. 2005;11:2616–25.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Barnett DH, Sheng S, Charn TH, Waheed A, Sly WS, Lin CY, et al. Estrogen receptor regulation of carbonic anhydrase XII through a distal enhancer in breast cancer. Cancer Res. 2008;68:3505–15.

    CAS  PubMed  Google Scholar 

  18. Woodfield GW, Hitchler MJ, Chen Y, Domann FE, Weigel RJ. Interaction of TFAP2C with the estrogen receptor-alpha promoter is controlled by chromatin structure. Clin Cancer Res. 2009;15:3672–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Kulak MV, Cyr AR, Woodfield GW, Bogachek M, Spanheimer PM, Li T, et al. Transcriptional regulation of the GPX1 gene by TFAP2C and aberrant CpG methylation in human breast cancer. Oncogene. 2013;32:4043–51.

    CAS  PubMed  Google Scholar 

  20. Cyr AR, Kulak MV, Park JM, Bogachek MV, Spanheimer PM, Woodfield GW, et al. TFAP2C governs the luminal epithelial phenotype in mammary development and carcinogenesis. Oncogene. 2015;34:436–44.

    CAS  PubMed  Google Scholar 

  21. De Andrade JP, Park JM, Gu VW, Woodfield GW, Kulak MV, Lorenzen AW, et al. EGFR is regulated by TFAP2C in luminal breast cancer and is a target for vandetanib. Mol Cancer Ther. 2016;15:503–11.

    PubMed  PubMed Central  Google Scholar 

  22. Liu Q, Kulak MV, Borcherding N, Maina PK, Zhang W, Weigel RJ, et al. A novel HER2 gene body enhancer contributes to HER2 expression. Oncogene. 2018;37:687–94.

    CAS  PubMed  Google Scholar 

  23. Kopecka J, Campia I, Jacobs A, Frei AP, Ghigo D, Wollscheid B, et al. Carbonic anhydrase XII is a new therapeutic target to overcome chemoresistance in cancer cells. Oncotarget. 2015;6:6776–93.

    PubMed  PubMed Central  Google Scholar 

  24. Woodfield GW, Horan AD, Chen Y, Weigel RJ. TFAP2C controls hormone response in breast cancer cells through multiple pathways of estrogen signaling. Cancer Res. 2007;67:8439–43.

    CAS  PubMed  Google Scholar 

  25. McPherson LA, Weigel RJ. AP2alpha and AP2gamma: a comparison of binding site specificity and transactivation of the estrogen receptor promoter and single site promoter constructs. Nucleic Acids Res. 1999;27:4040–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Spanheimer PM, Woodfield GW, Cyr AR, Kulak MV, White-Baer LS, Bair TB, et al. Expression of the RET proto-oncogene is regulated by TFAP2C in breast cancer independent of the estrogen receptor. Ann Surg Oncol. 2013;20:2204–12.

    PubMed  Google Scholar 

  27. Dai X, Cheng H, Bai Z, Li J. Breast cancer cell line classification and its relevance with breast tumor subtyping. J Cancer. 2017;8:3131–41.

    PubMed  PubMed Central  Google Scholar 

  28. Yersal O, Barutca S. Biological subtypes of breast cancer: prognostic and therapeutic implications. World J Clin Oncol. 2014;5:412–24.

    PubMed  PubMed Central  Google Scholar 

  29. Waheed A, Sly WS. Carbonic anhydrase XII functions in health and disease. Gene. 2017;623:33–40. https://doi.org/10.1016/j.gene.2017.04.027. Review.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. von Neubeck B, Gondi G, Riganti C, Pan C, Parra Damas A, Scherb H, et al. An inhibitory antibody targeting carbonic anhydrase XII abrogates chemoresistance and significantly reduces lung metastases in an orthotopic breast cancer model in vivo. Int J Cancer. 2018;143:2065–75.

    Google Scholar 

  31. Kopecka J, Rankin GM, Salaroglio IC, Poulsen SA, Riganti C. P-glycoprotein-mediated chemoresistance is reversed by carbonic anhydrase XII inhibitors. Oncotarget. 2016;7:85861–75.

    PubMed  PubMed Central  Google Scholar 

  32. Kopecka J, Campia I, Jacobs A, Frei AP, Ghigo D, Wollscheid B, et al. Carbonic anhydrase XII is a new therapeutic target to overcome chemoresistance in cancer cells. Oncotarget. 2015;6:6776–93.

    PubMed  PubMed Central  Google Scholar 

  33. Palmer MB, Majumder P, Green MR, Wade PA, Boss JM. A 3′ enhancer controls snail expression in melanoma cells. Cancer Res. 2007;67:6113–20.

    CAS  PubMed  Google Scholar 

  34. Neve RM, Chin K, Fridlyand J, Yeh J, Baehner FL, Fevr T, et al. A collection of breast cancer cell lines for the study of functionally distinct cancer subtypes. Cancer cell. 2006;10:515–27.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Kao J, Salari K, Bocanegra M, Choi YL, Girard L, Gandhi J, et al. Molecular profiling of breast cancer cell lines defines relevant tumor models and provides a resource for cancer gene discovery. PLoS ONE. 2009;4:e6146. https://doi.org/10.1371/journal.pone.0006146.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Weigelt B, Baehner FL, Reis-Filho JS. The contribution of gene expression profiling to breast cancer classification, prognostication and prediction: a retrospective of the last decade. J Pathol. 2010;220:263–80.

    CAS  PubMed  Google Scholar 

  37. Sotiriou C, Pusztai L. Gene-expression signatures in breast cancer. N Engl J Med. 2009;360:790–800. Review.

    CAS  PubMed  Google Scholar 

  38. O’Brien KM, Cole SR, Tse CK, Perou CM, Carey LA, Foulkes WD, et al. Intrinsic breast tumor subtypes, race, and long-term survival in the Carolina Breast Cancer Study. Clin Cancer Res. 2010;16:6100–10.

    PubMed  PubMed Central  Google Scholar 

  39. Brenton JD, Carey LA, Ahmed AA, Caldas C. Molecular classification and molecular forecasting of breast cancer: ready for clinical application? J Clin Oncol. 2005;23:7350–60.

    CAS  PubMed  Google Scholar 

  40. Riaz M, van Jaarsveld MT, Hollestelle A, Prager-van der Smissen WJ, Heine AA, Boersma AW, et al. miRNA expression profiling of 51 human breast cancer cell lines reveals subtype and driver mutation-specific miRNAs. Breast cancer Res. 2013;15:R33.

    PubMed  PubMed Central  Google Scholar 

  41. Lacroix M, Haibe-Kains B, Hennuy B, Laes JF, Lallemand F, Gonze I, et al. Gene regulation by phorbol 12-myristate 13-acetate in MCF-7 and MDA-MB-231, two breast cancer cell lines exhibiting highly different phenotypes. Oncol Rep. 2004;12:701–7.

    CAS  PubMed  Google Scholar 

  42. Yau C, Esserman L, Moore DH, Waldman F, Sninsky J, Benz CC. A multigene predictor of metastatic outcome in early stage hormone receptor-negative and triple-negative breast cancer. Breast Cancer Res. 2010;12:R85.

    PubMed  PubMed Central  Google Scholar 

  43. Edgar R, Domrachev M, Lash AE. Gene expression omnibus: NCBI gene expression and hybridization array data repository. Nucleic Acids Res. 2002;30:207–10.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Woodfield GW, Chen Y, Bair TB, Domann FE, Weigel RJ. Identification of primary gene targets of TFAP2C in hormone responsive breast carcinoma cells. Genes Chromosomes Cancer. 2010;49:948–62.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Zhaoming Wang for his excellent technical skills in cell culture. Also, we appreciate technical support provided by Keith D. Brendes.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mikhail V. Kulak.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Franke, C.M., Gu, V.W., Grimm, B.G. et al. TFAP2C regulates carbonic anhydrase XII in human breast cancer. Oncogene 39, 1290–1301 (2020). https://doi.org/10.1038/s41388-019-1062-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-019-1062-5

This article is cited by

Search

Quick links