Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

The DNA-damage response and nuclear events as regulators of nonapoptotic forms of cell death

Abstract

The maintenance of genome stability is essential for the cell as the integrity of genomic information guaranties reproduction of a whole organism. DNA damage occurring in response to different natural and nonnatural stimuli (errors in DNA replication, UV radiation, chemical agents, etc.) is normally detected by special cellular machinery that induces DNA repair. However, further accumulation of genetic lesions drives the activation of cell death to eliminate cells with defective genome. This particular feature is used for targeting fast-proliferating tumor cells during chemo-, radio-, and immunotherapy. Among different cell death modalities induced by DNA damage, apoptosis is the best studied. Nevertheless, nonapoptotic cell death and adaptive stress responses are also activated following genotoxic stress and play a crucial role in the outcome of anticancer therapy. Here, we provide an overview of nonapoptotic cell death pathways induced by DNA damage and discuss their interplay with cellular senescence, mitotic catastrophe, and autophagy.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1
Fig. 2
Fig. 3

References

  1. 1.

    Kerr JFR, Wyllie AH, Currie ARD. Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br J Cancer. 1972;26:239–57.

    CAS  PubMed  PubMed Central  Google Scholar 

  2. 2.

    Skalka M, Matyasova J, Cejkova M. DNA in chromatin of irradiated lymphoid tissues degrades in vivo into regular fragments. FEBS Lett. 1976;72:271–5.

    CAS  PubMed  Google Scholar 

  3. 3.

    Laster SM, Wood JG, Gooding LR. Tumor necrosis factor can induce both apoptic and necrotic forms of cell lysis. J Immunol. 1988;141:2629–34.

    CAS  PubMed  Google Scholar 

  4. 4.

    Degterev A, Huang Z, Boyce M, Li Y, Jagtap P, Mizushima N, et al. Chemical inhibitor of nonapoptotic cell death with therapeutic potential for ischemic brain injury. Nat Chem Biol. 2005;1:112–9.

    CAS  Google Scholar 

  5. 5.

    Hanson B. Necroptosis: A new way of dying? Cancer Biol Ther. 2016;17:899–910.

    CAS  PubMed  PubMed Central  Google Scholar 

  6. 6.

    Galluzzi L, Bravo-San Pedro JM, Vitale I, Aaronson SA, Abrams JM, Adam D et al. Essential versus accessory aspects of cell death: recommendations of the NCCD 2015. Cell Death Differ. 2015;22:58–73.

    CAS  Google Scholar 

  7. 7.

    Samali A, Fulda S, Gorman AM, Hori O, Srinivasula SM. Cell stress and cell death. Int J Cell Biol. 2010;2010:245803.

    PubMed  PubMed Central  Google Scholar 

  8. 8.

    Spriggs KA, Bushell M, Willis AE. Translational regulation of gene expression during conditions of cell stress. Mol Cell. 2010;40:228–37.

    CAS  PubMed  Google Scholar 

  9. 9.

    Brown JM, Wouters BG. Apoptosis, p53, and tumor cell sensitivity to anticancer agents. Cancer Res. 1999;59:1391–9.

    CAS  PubMed  Google Scholar 

  10. 10.

    Mohammad RM, Muqbil I, Lowe L, Yedjou C, Hsu HY, Lin LT, et al. Broad targeting of resistance to apoptosis in cancer. Semin Cancer Biol. 2015;35(Suppl):S78–S103.

    PubMed  PubMed Central  Google Scholar 

  11. 11.

    Prokhorova EA, Zamaraev AV, Kopeina GS, Zhivotovsky B, Lavrik IN. Role of the nucleus in apoptosis: signaling and execution. Cell Mol Life Sci. 2015;72:4593–612.

    CAS  PubMed  Google Scholar 

  12. 12.

    Polo SE, Jackson SP. Dynamics of DNA damage response proteins at DNA breaks: a focus on protein modifications. Genes Dev. 2011;25:409–33.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. 13.

    Ciccia A, Elledge SJ. The DNA damage response: making it safe to play with knives. Mol Cell 2010;40:179–204.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. 14.

    Duursma AM, Driscoll R, Elias JE, Cimprich KA. A role for the MRN complex in ATR activation via TOPBP1 recruitment. Mol Cell. 2013;50:116–22.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. 15.

    Reinhardt HC, Yaffe MB. Kinases that control the cell cycle in response to DNA damage: Chk1, Chk2, and MK2. Curr Opin Cell Biol. 2009;21:245–55.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. 16.

    Batchelor E, Mock CS, Bhan I, Loewer A, Lahav G. Recurrent initiation: a mechanism for triggering p53 pulses in response to DNA damage. Mol Cell. 2008;30:277–89.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. 17.

    Allocati N, Di Ilio C, De Laurenzi V. P63/p73 in the control of cell cycle and cell death. Exp Cell Res. 2012;318:1285–90.

    CAS  PubMed  Google Scholar 

  18. 18.

    He L, He X, Lim LP, de Stanchina E, Xuan Z, Liang Y, et al. A microRNA component of the p53 tumour suppressor network. Nature. 2007;447:1130–4.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. 19.

    Christmann M, Kaina B. Transcriptional regulation of human DNA repair genes following genotoxic stress: trigger mechanisms, inducible responses and genotoxic adaptation. Nucleic Acids Res. 2013;41:8403–20.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. 20.

    He Y, Roos WP, Wu Q, Hofmann TG, Kaina B. The SIAH1-HIPK2-p53ser46 damage response pathway is involved in temozolomide-induced glioblastoma cell death. Mol Cancer Res. 2019;17:1129–41.

    CAS  PubMed  Google Scholar 

  21. 21.

    Matt S, Hofmann TG. The DNA damage-induced cell death response: a roadmap to kill cancer cells. Cell Mol Life Sci. 2016;73:2829–50.

    CAS  PubMed  Google Scholar 

  22. 22.

    Vitale I, Galluzzi L, Castedo M, Kroemer G. Mitotic catastrophe: a mechanism for avoiding genomic instability. Nat Rev Mol Cell Biol. 2011;12:385–92.

    CAS  PubMed  Google Scholar 

  23. 23.

    Campisi J. Aging, cellular senescence, and cancer. Annu Rev Physiol. 2013;75:685–705.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. 24.

    Salama R, Sadaie M, Hoare M, Narita M. Cellular senescence and its effector programs. Genes Dev. 2014;28:99–114.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. 25.

    Hayflick L, Moorhead PS. The serial cultivation of human diploid cell strains. Exp Cell Res. 1961;25:585–621.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. 26.

    Hayflick L. The limited in vitro lifetime of human diploid cell strains. Exp Cell Res. 1965;37:614–36.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. 27.

    Harley CB, Futcher AB, Greider CW. Telomeres shorten during ageing of human fibroblasts. Nature. 1990;345:458–60.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. 28.

    Bodnar AG, Ouellette M, Frolkis M, Holt SE, Chiu CP, Morin GB, et al. Extension of life-span by introduction of telomerase into normal human cells. Science. 1998;279:349–52.

    CAS  PubMed  Google Scholar 

  29. 29.

    Allsopp RC. Models of initiation of replicative senescence by loss of telomeric DNA. Exp Gerontol. 1996;31: 235–43.

    CAS  PubMed  Google Scholar 

  30. 30.

    d’Adda di Fagagna F. Living on a break: cellular senescence as a DNA-damage response. Nat Rev Cancer. 2008;8:512–22.

    PubMed  Google Scholar 

  31. 31.

    Griffith JD, Comeau L, Rosenfield S, Stansel RM, Bianchi A, Moss H, et al. Mammalian telomeres end in a large duplex loop. Cell. 1999;97:503–14.

    CAS  PubMed  Google Scholar 

  32. 32.

    Denchi EL, de Lange T. Protection of telomeres through independent control of ATM and ATR by TRF2 and POT1. Nature. 2007;448:1068–71.

    CAS  PubMed  Google Scholar 

  33. 33.

    Karlseder J, Hoke K, Mirzoeva OK, Bakkenist C, Kastan MB, Petrini JHJ, et al. The telomeric protein TRF2 binds the ATM kinase and can inhibit the ATM-dependent DNA damage response. PLoS Biol. 2004;2:e240.

    PubMed  PubMed Central  Google Scholar 

  34. 34.

    Toussaint O, Medrano EE, von Zglinicki T. Cellular and molecular mechanisms of stress-induced premature senescence (SIPS) of human diploid fibroblasts and melanocytes. Exp Gerontol. 2000;35:927–45.

    CAS  PubMed  Google Scholar 

  35. 35.

    Serrano M, Lin AW, McCurrach ME, Beach D, Lowe SW. Oncogenic ras provokes premature cell senescence associated with accumulation of p53 and p16INK4a. Cell. 1997;88:593–602.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. 36.

    Bianchi-Smiraglia A, Nikiforov MA. Controversial aspects of oncogene-induced senescence. Cell Cycle. 2012;11:4147–51.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. 37.

    Lee AC, Fenster BE, Ito H, Takeda K, Bae NS, Hirai T, et al. Ras proteins induce senescence by altering the intracellular levels of reactive oxygen species. J Biol Chem. 1999;274:7936–40.

    CAS  PubMed  Google Scholar 

  38. 38.

    Di Micco R, Fumagalli M, Cicalese A, Piccinin S, Gasparini P, Luise C, et al. Oncogene-induced senescence is a DNA damage response triggered by DNA hyper-replication. Nature. 2006;444:638–42.

    PubMed  Google Scholar 

  39. 39.

    Mannava S, Moparthy KC, Wheeler LJ, Natarajan V, Zucker SN, Fink EE, et al. Depletion of deoxyribonucleotide pools is an endogenous source of DNA damage in cells undergoing oncogene-induced senescence. Am J Pathol. 2013;182:142–51.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. 40.

    Qin S, Schulte BA, Wang GY. Role of senescence induction in cancer treatment. World J Clin Oncol. 2018;9:180–7.

    PubMed  PubMed Central  Google Scholar 

  41. 41.

    de Stanchina E, Querido E, Narita M, Davuluri RV, Pandolfi PP, Ferbeyre G, et al. PML is a direct p53 target that modulates p53 effector functions. Mol Cell. 2004;13:523–35.

    PubMed  Google Scholar 

  42. 42.

    Kunz C, Pebler S, Otte J, von der Ahe D. Differential regulation of plasminogen activator and inhibitor gene transcription by the tumor suppressor p53. Nucleic Acids Res. 1995;23:3710–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. 43.

    Qian Y, Zhang J, Yan B, Chen X. DEC1, a basic helix-loop-helix transcription factor and a novel target gene of the p53 family, mediates p53-dependent premature senescence. J Biol Chem. 2008;283:2896–905.

    CAS  PubMed  Google Scholar 

  44. 44.

    Qian Y, Chen X. Senescence regulation by the p53 protein family. Methods Mol Biol. 2013;965:37–61.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. 45.

    Waga S, Hannon GJ, Beach D, Stillman B. The p21 inhibitor of cyclin-dependent kinases controls DNA replication by interaction with PCNA. Nature. 1994;369:574–8.

    CAS  PubMed  Google Scholar 

  46. 46.

    Vernier M, Bourdeau V, Gaumont-Leclerc M-F, Moiseeva O, Begin V, Saad F, et al. Regulation of E2Fs and senescence by PML nuclear bodies. Genes Dev. 2011;25:41–50.

    CAS  PubMed  PubMed Central  Google Scholar 

  47. 47.

    Ferbeyre G, de Stanchina E, Querido E, Baptiste N, Prives C, Lowe SW. PML is induced by oncogenic ras and promotes premature senescence. Genes Dev. 2000;14:2015–27.

    CAS  PubMed  PubMed Central  Google Scholar 

  48. 48.

    Galluzzi L, Vitale I, Abrams JM, Alnemri ES, Baehrecke EH, Blagosklonny MV, et al. Molecular definitions of cell death subroutines: recommendations of the Nomenclature Committee on Cell Death 2012. Cell Death Differ. 2012;19:107–20.

    CAS  PubMed  PubMed Central  Google Scholar 

  49. 49.

    Denisenko TV, Sorokina IV, Gogvadze V, Zhivotovsky B. Mitotic catastrophe and cancer drug resistance: a link that must to be broken. Drug Resist Updates. 2015;24:1–12.

    Google Scholar 

  50. 50.

    Galluzzi L, Vitale I, Aaronson SA, Abrams JM, Adam D, Agostinis P, et al. Molecular mechanisms of cell death: recommendations of the Nomenclature Committee on Cell Death 2018. Cell Death Differ. 2018;25:486–541.

    PubMed  PubMed Central  Google Scholar 

  51. 51.

    Sedic M, Poznic M, Gehrig P, Scott M, Schlapbach R, Hranjec M, et al. Differential antiproliferative mechanisms of novel derivative of benzimidazo[1,2-alpha]quinoline in colon cancer cells depending on their p53 status. Mol Cancer Ther. 2008;7:2121–32.

    CAS  PubMed  Google Scholar 

  52. 52.

    Castedo M, Coquelle A, Vivet S, Vitale I, Kauffmann A, Dessen P, et al. Apoptosis regulation in tetraploid cancer cells. EMBO J. 2006;25:2584–95.

    CAS  PubMed  PubMed Central  Google Scholar 

  53. 53.

    Tomasini R, Tsuchihara K, Tsuda C, Lau SK, Wilhelm M, Ruffini A, et al. TAp73 regulates the spindle assembly checkpoint by modulating BubR1 activity. Proc Natl Acad Sci USA. 2009;106:797–802.

    CAS  PubMed  Google Scholar 

  54. 54.

    Tomasini R, Tsuchihara K, Wilhelm M, Fujitani M, Rufini A, Cheung CC, et al. TAp73 knockout shows genomic instability with infertility and tumor suppressor functions. Genes Dev. 2008;22:2677–91.

    CAS  PubMed  PubMed Central  Google Scholar 

  55. 55.

    Vakifahmetoglu H, Olsson M, Tamm C, Heidari N, Orrenius S, Zhivotovsky B. DNA damage induces two distinct modes of cell death in ovarian carcinomas. Cell Death Differ. 2008;15:555–66.

    Google Scholar 

  56. 56.

    Andersen JL, Johnson CE, Freel CD, Parrish AB, Day JL, Buchakjian MR, et al. Restraint of apoptosis during mitosis through interdomain phosphorylation of caspase-2. EMBO J. 2009;28:3216–27.

    CAS  PubMed  PubMed Central  Google Scholar 

  57. 57.

    Castedo M, Perfettini J-L, Roumier T, Valent A, Raslova H, Yakushijin K, et al. Mitotic catastrophe constitutes a special case of apoptosis whose suppression entails aneuploidy. Oncogene. 2004;23:4362–70.

    CAS  PubMed  Google Scholar 

  58. 58.

    Sidi S, Sanda T, Kennedy RD, Hagen AT, Jette CA, Hoffmans R, et al. Chk1 suppresses a caspase-2 apoptotic response to DNA damage that bypasses p53, Bcl-2, and caspase-3. Cell. 2008;133:864–77.

    CAS  PubMed  PubMed Central  Google Scholar 

  59. 59.

    Manzl C, Fava LL, Krumschnabel G, Peintner L, Tanzer MC, Soratroi C, et al. Death of p53-defective cells triggered by forced mitotic entry in the presence of DNA damage is not uniquely dependent on caspase-2 or the PIDDosome. Cell Death Dis. 2013;4:e942.

    CAS  PubMed  PubMed Central  Google Scholar 

  60. 60.

    Kwok M, Davies N, Agathanggelou A, Smith E, Oldreive C, Petermann E, et al. ATR inhibition induces synthetic lethality and overcomes chemoresistance in TP53- or ATM-defective chronic lymphocytic leukemia cells. Blood. 2016;127:582–95.

    CAS  PubMed  Google Scholar 

  61. 61.

    Pietrobono S, Santini R, Gagliardi S, Dapporto F, Colecchia D, Chiariello M, et al. Targeted inhibition of Hedgehog-GLI signaling by novel acylguanidine derivatives inhibits melanoma cell growth by inducing replication stress and mitotic catastrophe. Cell Death Dis. 2018;9:142.

    PubMed  PubMed Central  Google Scholar 

  62. 62.

    Lescarbeau RS, Lei L, Bakken KK, Sims PA, Sarkaria JN, Canoll P, et al. Quantitative phosphoproteomics reveals Wee1 kinase as a therapeutic target in a model of proneural glioblastoma. Mol Cancer Ther. 2016;15:1332–43.

    CAS  PubMed  PubMed Central  Google Scholar 

  63. 63.

    Karakashev S, Zhu H, Yokoyama Y, Zhao B, Fatkhutdinov N, Kossenkov AV, et al. BET bromodomain inhibition synergizes with PARP inhibitor in epithelial ovarian cancer. Cell Rep. 2017;21:3398–405.

    CAS  PubMed  PubMed Central  Google Scholar 

  64. 64.

    Colicchia V, Petroni M, Guarguaglini G, Sardina F, Sahún-Roncero M, Carbonari M, et al. PARP inhibitors enhance replication stress and cause mitotic catastrophe in MYCN-dependent neuroblastoma. Oncogene. 2017;36:4682–91.

    CAS  PubMed  Google Scholar 

  65. 65.

    Roninson IB, Broude EV, Chang BD. If not apoptosis, then what? Treatment-induced senescence and mitotic catastrophe in tumor cells. Drug Resist Updates. 2001;4:303–13.

    CAS  Google Scholar 

  66. 66.

    Suzuki K, Ojima M, Kodama S, Watanabe M. Radiation-induced DNA damage and delayed induced genomic instability. Oncogene. 2003;22:6988–93.

    CAS  PubMed  Google Scholar 

  67. 67.

    Gao R-J, Liang Y-X, Li D-D, Zhang H-Y, Zhen Y-S. Effect of lidamycin on telomerase activity in human hepatoma BEL-7402 cells. Biomed Environ Sci. 2007;20:189–97.

    CAS  PubMed  Google Scholar 

  68. 68.

    Eom Y-W, Kim MA, Park SS, Goo MJ, Kwon HJ, Sohn S, et al. Two distinct modes of cell death induced by doxorubicin: apoptosis and cell death through mitotic catastrophe accompanied by senescence-like phenotype. Oncogene. 2005;24:4765–77.

    CAS  PubMed  Google Scholar 

  69. 69.

    Sorokina IV, Denisenko TV, Imreh G, Tyurin-Kuzmin PA, Kaminskyy VO, Gogvadze V, et al. Involvement of autophagy in the outcome of mitotic catastrophe. Sci Rep. 2017;7:14571.

    PubMed  PubMed Central  Google Scholar 

  70. 70.

    Yun M, Han Y-H, Yoon SH, Kim HY, Kim B-Y, Ju Y-J, et al. p31comet Induces cellular senescence through p21 accumulation and Mad2 disruption. Mol Cancer Res. 2009;7:371–82.

    CAS  PubMed  Google Scholar 

  71. 71.

    Chen N-C, Chyau C-C, Lee Y-J, Tseng H-C, Chou F-P. Promotion of mitotic catastrophe via activation of PTEN by paclitaxel with supplement of mulberry water extract in bladder cancer cells. Sci Rep. 2016;6:20417.

    CAS  PubMed  PubMed Central  Google Scholar 

  72. 72.

    Chen Z, Trotman LC, Shaffer D, Lin H-K, Dotan ZA, Niki M, et al. Crucial role of p53-dependent cellular senescence in suppression of Pten-deficient tumorigenesis. Nature. 2005;436:725–30.

    CAS  PubMed  PubMed Central  Google Scholar 

  73. 73.

    Janssen A, Kops GJPL, Medema RH. Elevating the frequency of chromosome mis-segregation as a strategy to kill tumor cells. Proc Natl Acad Sci USA. 2009;106:19108–13.

    CAS  PubMed  Google Scholar 

  74. 74.

    Acosta JC, Gil J. Senescence: a new weapon for cancer therapy. Trends Cell Biol. 2012;22:211–9.

    CAS  PubMed  Google Scholar 

  75. 75.

    Nardella C, Clohessy JG, Alimonti A, Pandolfi PP. Pro-senescence therapy for cancer treatment. Nat Rev Cancer. 2011;11:503–11.

    CAS  PubMed  Google Scholar 

  76. 76.

    Suzuki M, Boothman Da. Stress-induced Premature Senescence (SIPS). J Radiat Res. 2008;49:105–12.

    PubMed  Google Scholar 

  77. 77.

    Velarde MC, Demaria M, Campisi J. Senescent cells and their secretory phenotype as targets for cancer therapy. Interdiscip Top Gerontol. 2013;38:17–27.

    PubMed  PubMed Central  Google Scholar 

  78. 78.

    Klionsky DJ, Abdelmohsen K, Abe A, Abedin MJ, Abeliovich H, Arozena AA, et al. Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy. 2016;12:1.

    PubMed  PubMed Central  Google Scholar 

  79. 79.

    Tait SWG, Ichim G, Green DR. Die another way—non-apoptotic mechanisms of cell death. J Cell Sci. 2014;127:2135–44.

    CAS  PubMed  PubMed Central  Google Scholar 

  80. 80.

    Orlotti NI, Cimino-Reale G, Borghini E, Pennati M, Sissi C, Perrone F, et al. Autophagy acts as a safeguard mechanism against G-quadruplex ligand-mediated DNA damage. Autophagy. 2012;8:1185–96.

    CAS  PubMed  Google Scholar 

  81. 81.

    Knizhnik AV, Roos WP, Nikolova T, Quiros S, Tomaszowski K-H, Christmann M, et al. Survival and death strategies in glioma cells: autophagy, senescence and apoptosis triggered by a single type of temozolomide-induced DNA damage. PLoS One. 2013;8:e55665.

    CAS  PubMed  PubMed Central  Google Scholar 

  82. 82.

    Sapkota GP, Deak M, Kieloch A, Morrice N, Goodarzi AA, Smythe C, et al. Ionizing radiation induces ataxia telangiectasia mutated kinase (ATM)-mediated phosphorylation of LKB1/STK11 at Thr-366. Biochem J. 2002;368:507–16.

    CAS  PubMed  PubMed Central  Google Scholar 

  83. 83.

    Chen J-H, Zhang P, Chen W-D, Li D-D, Wu X-Q, Deng R, et al. ATM-mediated PTEN phosphorylation promotes PTEN nuclear translocation and autophagy in response to DNA-damaging agents in cancer cells. Autophagy. 2015;11:239–52.

    PubMed  PubMed Central  Google Scholar 

  84. 84.

    Kim J, Kundu M, Viollet B. Guan K-L. AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1. Nat Cell Biol. 2011;13:132–41.

    CAS  PubMed  PubMed Central  Google Scholar 

  85. 85.

    Liu M, Zeng T, Zhang X, Liu C, Wu Z, Yao L, et al. ATR/Chk1 signaling induces autophagy through sumoylated RhoB-mediated lysosomal translocation of TSC2 after DNA damage. Nat Commun. 2018;9:4139.

    CAS  PubMed  PubMed Central  Google Scholar 

  86. 86.

    Morselli E, Shen S, Ruckenstuhl C, Bauer MA, Mariño G, Galluzzi L, et al. p53 inhibits autophagy by interacting with the human ortholog of yeast Atg17, RB1CC1/FIP200. Cell Cycle. 2011;10:2763–9.

    CAS  PubMed  Google Scholar 

  87. 87.

    Zhang X, Qin Z, Wang J. The role of p53 in cell metabolism. Acta Pharmacol Sin. 2010;31:1208–12.

    CAS  PubMed  PubMed Central  Google Scholar 

  88. 88.

    Wei Y, Sinha S, Levine B. Dual role of JNK1-mediated phosphorylation of Bcl-2 in autophagy and apoptosis regulation. Autophagy. 2008;4:949–51.

    CAS  PubMed  PubMed Central  Google Scholar 

  89. 89.

    Rodríguez-Vargas JM, Ruiz-Magaña MJ, Ruiz-Ruiz C, Majuelos-Melguizo J, Peralta-Leal A, Rodríguez MI, et al. ROS-induced DNA damage and PARP-1 are required for optimal induction of starvation-induced autophagy. Cell Res. 2012;22:1181–98.

    PubMed  PubMed Central  Google Scholar 

  90. 90.

    Muñoz-Gámez JA, Rodríguez-Vargas JM, Quiles-Pérez R, Aguilar-Quesada R, Martín-Oliva D, de Murcia G, et al. PARP-1 is involved in autophagy induced by DNA damage. Autophagy. 2009;5:61–74.

    PubMed  Google Scholar 

  91. 91.

    Lee IH, Cao L, Mostoslavsky R, Lombard DB, Liu J, Bruns NE, et al. A role for the NAD-dependent deacetylase Sirt1 in the regulation of autophagy. Proc Natl Acad Sci USA. 2008;105:3374–9.

    CAS  PubMed  Google Scholar 

  92. 92.

    Pietrocola F, Izzo V, Niso-Santano M, Vacchelli E, Galluzzi L, Maiuri MC, et al. Regulation of autophagy by stress-responsive transcription factors. Semin Cancer Biol. 2013;23:310–22.

    CAS  PubMed  Google Scholar 

  93. 93.

    Eapen VV, Waterman DP, Bernard A, Schiffmann N, Sayas E, Kamber R, et al. A pathway of targeted autophagy is induced by DNA damage in budding yeast. Proc Natl Acad Sci USA. 2017;114:E1158–67.

    CAS  PubMed  Google Scholar 

  94. 94.

    Bae H, Guan J-L. Suppression of autophagy by FIP200 deletion impairs DNA damage repair and increases cell death upon treatments with anticancer agents. Mol Cancer Res. 2011;9:1232–41.

    CAS  PubMed  PubMed Central  Google Scholar 

  95. 95.

    Wang Y, Zhang N, Zhang L, Li R, Fu W, Ma K, et al. Autophagy regulates chromatin ubiquitination in DNA damage response through elimination of SQSTM1/p62. Mol Cell. 2016;63:34–48.

    CAS  PubMed  Google Scholar 

  96. 96.

    Wang L, Howell MEA, Sparks-Wallace A, Hawkins C, Nicksic CA, Kohne C. et al. p62-mediated Selective autophagy endows virus-transformed cells with insusceptibility to DNA damage under oxidative stress. PLOS Pathogens. 2019;15:e1007541.

    CAS  PubMed  PubMed Central  Google Scholar 

  97. 97.

    Xu Y, Ma H, Fang Y, Zhang Z, Shao J, Hong M, et al. Cisplatin-induced necroptosis in TNFα dependent and independent pathways. Cell Signal. 2017;31:112–23.

    CAS  PubMed  Google Scholar 

  98. 98.

    Pietkiewicz S, Schmidt JH, Lavrik IN. Quantification of apoptosis and necroptosis at the single cell level by a combination of imaging flow cytometry with classical Annexin V/propidium iodide staining. J Immunol Methods. 2015;423:99–103.

    CAS  PubMed  Google Scholar 

  99. 99.

    Vandenabeele P, Galluzzi L, Vanden Berghe T, Kroemer G. Molecular mechanisms of necroptosis: an ordered cellular explosion. Nat Rev Mol Cell Biol. 2010;11:700–14.

    CAS  PubMed  Google Scholar 

  100. 100.

    Wang H, Sun L, Su L, Rizo J, Liu L, Wang L-F, et al. Mixed lineage kinase domain-like protein MLKL causes necrotic membrane disruption upon phosphorylation by RIP3. Mol Cell. 2014;54:133–46.

    CAS  PubMed  Google Scholar 

  101. 101.

    Chen X, Li W, Ren J, Huang D, He W, Song Y, et al. Translocation of mixed lineage kinase domain-like protein to plasma membrane leads to necrotic cell death. Cell Res. 2014;24:105–21.

    CAS  PubMed  Google Scholar 

  102. 102.

    Hildebrand JM, Tanzer MC, Lucet IS, Young SN, Spall SK, Sharma P, et al. Activation of the pseudokinase MLKL unleashes the four-helix bundle domain to induce membrane localization and necroptotic cell death. Proc Natl Acad Sci USA. 2014;111:15072–7.

    CAS  PubMed  Google Scholar 

  103. 103.

    Oberst A, Dillon CP, Weinlich R, McCormick LL, Fitzgerald P, Pop C, et al. Catalytic activity of the caspase-8–FLIPL complex inhibits RIPK3-dependent necrosis. Nature. 2011;471:363–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  104. 104.

    Zamaraev AV, Kopeina GS, Buchbinder JH, Zhivotovsky B, Lavrik IN. Caspase-2 is a negative regulator of necroptosis. Int J Biochem Cell Biol. 2018;102:101–8.

    CAS  PubMed  Google Scholar 

  105. 105.

    Tenev T, Bianchi K, Darding M, Broemer M, Langlais C, Wallberg F, et al. The ripoptosome, a signaling platform that assembles in response to genotoxic stress and loss of IAPs. Mol Cell. 2011;43:432–48.

    CAS  PubMed  Google Scholar 

  106. 106.

    Feoktistova M, Geserick P, Kellert B, Dimitrova DP, Langlais C, Hupe M, et al. cIAPs block ripoptosome formation, a RIP1/caspase-8 containing intracellular cell death complex differentially regulated by cFLIP isoforms. Mol Cell. 2011;43:449–63.

    CAS  PubMed  PubMed Central  Google Scholar 

  107. 107.

    Jing L, Song F, Liu Z, Li J, Wu B, Fu Z, et al. MLKL-PITPα signaling-mediated necroptosis contributes to cisplatin-triggered cell death in lung cancer A549 cells. Cancer Lett. 2018;414:136–46.

    CAS  PubMed  Google Scholar 

  108. 108.

    Yoon S, Bogdanov K, Kovalenko A, Wallach D. Necroptosis is preceded by nuclear translocation of the signaling proteins that induce it. Cell Death Differ. 2016;23:253–60.

    CAS  PubMed  Google Scholar 

  109. 109.

    Biton S, Ashkenazi A. NEMO and RIP1 control cell fate in response to extensive DNA damage via TNF-α feedforward signaling. Cell. 2011;145:92–103.

    CAS  PubMed  Google Scholar 

  110. 110.

    Vaseva AV, Marchenko ND, Ji K, Tsirka SE, Holzmann S, Moll UM. p53 opens the mitochondrial permeability transition pore to trigger necrosis. Cell. 2012;149:1536–48.

    CAS  PubMed  PubMed Central  Google Scholar 

  111. 111.

    Dashzeveg N, Yoshida K. Cell death decision by p53 via control of the mitochondrial membrane. Cancer Lett. 2015;367:108–12.

    CAS  PubMed  Google Scholar 

  112. 112.

    Berghe TV, Linkermann A, Jouan-Lanhouet S, et al. Regulated necrosis: the expanding network of non-apoptotic cell death pathways. Nat Rev Mol Cell Biol. 2014;15:135–47.

    Google Scholar 

  113. 113.

    Christofferson DE, Li Y, Hitomi J, Zhou W, Upperman C, Zhu H, et al. A novel role for RIP1 kinase in mediating TNFα production. Cell Death Dis. 2012;3:e320.

    CAS  PubMed  PubMed Central  Google Scholar 

  114. 114.

    Linkermann A, Brasen JH, Darding M, Jin MK, Sanz AB, Heller J-O, et al. Two independent pathways of regulated necrosis mediate ischemia-reperfusion injury. Proc Natl Acad Sci USA. 2013;110:12024–9.

    CAS  PubMed  Google Scholar 

  115. 115.

    Zhang T, Zhang Y, Cui M, Jin L, Wang Y, Lv F, et al. CaMKII is a RIP3 substrate mediating ischemia- and oxidative stress–induced myocardial necroptosis. Nat Med. 2016;22:175–82.

    PubMed  Google Scholar 

  116. 116.

    Fatokun AA, Dawson VL, Dawson TM. Parthanatos: mitochondrial-linked mechanisms and therapeutic opportunities. Br J Pharmacol. 2014;171:2000–16.

    CAS  PubMed  PubMed Central  Google Scholar 

  117. 117.

    Chiu LY, Ho FM, Shiah SG, Chang Y, Lin WW. Oxidative stress initiates DNA damager MNNG-induced poly(ADP-ribose) polymerase-1-dependent parthanatos cell death. Biochem Pharmacol. 2011;81:459–70.

    CAS  PubMed  Google Scholar 

  118. 118.

    Wang Y, Kim NS, Li X, PA Greer, Koehler RC, Dawson VL, et al. Calpain activation is not required for AIF translocation in PARP-1-dependent cell death (parthanatos). J Neurochem. 2009;110:687–96.

    CAS  PubMed  PubMed Central  Google Scholar 

  119. 119.

    Wang Y, Kim NS, Haince J-F, Kang HC, David KK, Andrabi SA, et al. Poly(ADP-ribose) (PAR) binding to apoptosis-inducing factor is critical for PAR polymerase-1-dependent cell death (parthanatos). Sci Signal. 2011;4:ra20.

    PubMed  PubMed Central  Google Scholar 

  120. 120.

    Andrabi SA, Kim NS, Yu S-W, Wang H, Koh DW, Sasaki M, et al. Poly(ADP-ribose) (PAR) polymer is a death signal. Proc Natl Acad Sci USA. 2006;103:18308–13.

    CAS  Google Scholar 

  121. 121.

    Koh DW, Lawler AM, Poitras MF, Sasaki M, Wattler S, Nehls MC, et al. Failure to degrade poly(ADP-ribose) causes increased sensitivity to cytotoxicity and early embryonic lethality. Proc Natl Acad Sci USA. 2004;101:17699–704.

    CAS  PubMed  Google Scholar 

  122. 122.

    Yu S-W, Andrabi SA, Wang H, Kim NS, Poirier GG, Dawson TM, et al. Apoptosis-inducing factor mediates poly(ADP-ribose) (PAR) polymer-induced cell death. Proc Natl Acad Sci USA. 2006;103:18314–9.

    CAS  PubMed  Google Scholar 

  123. 123.

    Okamura H, Yoshida K, Amorim BR, Haneji T. Histone H1.2 is translocated to mitochondria and associates with Bak in bleomycin-induced apoptotic cells. J Cell Biochem. 2008;103:1488–96.

    CAS  PubMed  Google Scholar 

  124. 124.

    Andrabi SA, Kang HC, Haince J-F, Lee Y-I, Zhang J, Chi Z, et al. Iduna protects the brain from glutamate excitotoxicity and stroke by interfering with poly(ADP-ribose) polymer-induced cell death. Nat Med. 2011;17:692–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  125. 125.

    Gagné JP, Isabelle M, Lo KS, Bourassa S, Hendzel MJ, Dawson VL, et al. Proteome-wide identification of poly(ADP-ribose) binding proteins and poly(ADP-ribose)-associated protein complexes. Nucleic Acids Res. 2008;36:6959–76.

    PubMed  PubMed Central  Google Scholar 

  126. 126.

    Brunyanszki A, Szczesny B, Virag L, Szabo C. Mitochondrial poly(ADP-ribose) polymerase: The Wizard of Oz at work. Free Radic Biol Med. 2016;100:257–70.

    CAS  PubMed  PubMed Central  Google Scholar 

  127. 127.

    Dölle C, Rack JGM, Ziegler M. NAD and ADP-ribose metabolism in mitochondria. FEBS J. 2013;280:3530–41.

    PubMed  Google Scholar 

  128. 128.

    Dölle C, Niere M, Lohndal E, Ziegler M. Visualization of subcellular NAD pools and intra-organellar protein localization by poly-ADP-ribose formation. Cell Mol Life Sci. 2010;67:433–43.

    PubMed  Google Scholar 

  129. 129.

    Baek SH, Bae ON, Kim EK, Yu SW. Induction of mitochondrial dysfunction by poly(ADP-ribose) polymer: implication for neuronal cell death. Mol Cells. 2013;36:258–66.

    CAS  PubMed  PubMed Central  Google Scholar 

  130. 130.

    Niere M, Kernstock S, Koch-Nolte F, Ziegler M. Functional localization of two poly(ADP-ribose)-degrading enzymes to the mitochondrial matrix. Mol Cell Biol. 2008;28:814–24.

    CAS  PubMed  Google Scholar 

  131. 131.

    Wang Y, An R, Umanah GK, Park H, Nambiar K, Eacker SM, et al. A nuclease that mediates cell death induced by DNA damage and poly(ADP-ribose) polymerase-1. Science. 2016;354:aad6872.

    PubMed  PubMed Central  Google Scholar 

  132. 132.

    Jang K-H, Do Y-J, Son D, Son E, Choi J-S, Kim E. AIF-independent parthanatos in the pathogenesis of dry age-related macular degeneration. Cell Death Dis. 2017;8:e2526.

    CAS  PubMed  PubMed Central  Google Scholar 

  133. 133.

    Zhang F, Xie R, Munoz FM, Lau SS, Monks TJ. PARP-1 hyperactivation and reciprocal elevations in intracellular Ca2+ during ROS-induced nonapoptotic cell death. Toxicol Sci. 2014;140:118–34.

    CAS  PubMed  PubMed Central  Google Scholar 

  134. 134.

    Douglas DL, Baines CP. PARP1-mediated necrosis is dependent on parallel JNK and Ca2+/calpain pathways. J Cell Sci. 2014;127:4134–45.

    CAS  PubMed  PubMed Central  Google Scholar 

  135. 135.

    Erdélyi K, Bai P, Kovács I, Szabó E, Mocsár G, Kakuk A, et al. Dual role of poly(ADP-ribose) glycohydrolase in the regulation of cell death in oxidatively stressed A549 cells. FASEB J. 2009;23:3553–63.

    PubMed  PubMed Central  Google Scholar 

  136. 136.

    Alano CC, Garnier P, Ying W, Higashi Y, Kauppinen TM, Swanson RA. NAD+ depletion is necessary and sufficient for poly(ADP-ribose) polymerase-1-mediated neuronal death. J Neurosci. 2010;30:2967–78.

    CAS  PubMed  PubMed Central  Google Scholar 

  137. 137.

    Ying W, Garnier P, Swanson RA. NAD+ repletion prevents PARP-1-induced glycolytic blockade and cell death in cultured mouse astrocytes. Biochem Biophys Res Commun. 2003;308:809–13.

    CAS  PubMed  Google Scholar 

  138. 138.

    Delgado-Camprubi M, Esteras N, Soutar MP, Plun-Favreau H, Abramov AY. Deficiency of Parkinson’s disease-related gene Fbxo7 is associated with impaired mitochondrial metabolism by PARP activation. Cell Death Differ. 2016;1:1–12.

    Google Scholar 

  139. 139.

    Ying W, Chen Y, Alano CC, Swanson RA. Tricarboxylic acid cycle substrates prevent PARP-mediated death of neurons and astrocytes. J Cereb Blood Flow Metab. 2002;22:774–9.

    CAS  PubMed  Google Scholar 

  140. 140.

    Andrabi SA, Umanah GKE, Chang C, Stevens DA, Karuppagounder SS, Gagné J-P, et al. Poly(ADP-ribose) polymerase-dependent energy depletion occurs through inhibition of glycolysis. Proc Natl Acad Sci USA. 2014;111:10209–14.

    CAS  PubMed  Google Scholar 

  141. 141.

    Fouquerel E, Goellner EM, Yu Z, Gagné JP, de Moura MB, Feinstein T, et al. ARTD1/PARP1 negatively regulates glycolysis by inhibiting hexokinase 1 independent of NAD+ depletion. Cell Rep. 2014;8:1819–31.

    CAS  PubMed  PubMed Central  Google Scholar 

  142. 142.

    Jeong NY, Yoo YH. Cerulenin-induced apoptosis is mediated by disrupting the interaction between AIF and hexokinase II. Int J Oncol. 2012;40:1949–56.

    CAS  PubMed  Google Scholar 

  143. 143.

    Chen Z, Zhang H, Lu W, Huang P. Role of mitochondria-associated hexokinase II in cancer cell death induced by 3-bromopyruvate. Biochim Biophys Acta. 2009;1787:553–60.

    CAS  PubMed  PubMed Central  Google Scholar 

  144. 144.

    Dantzer F, Giraud-Panis M-J, Jaco I, Amé J-C, Schultz I, Blasco M, et al. Functional interaction between poly(ADP-Ribose) polymerase 2 (PARP-2) and TRF2: PARP activity negatively regulates TRF2. Mol Cell Biol. 2004;24:1595–607.

    CAS  PubMed  PubMed Central  Google Scholar 

  145. 145.

    Vanden Berghe T, Linkermann A, Jouan-Lanhouet S, Walczak H, Vandenabeele P. Regulated necrosis: the expanding network of non-apoptotic cell death pathways. Nat Rev Mol Cell Biol. 2014;15:135–47.

    CAS  Google Scholar 

  146. 146.

    Dixon SJ, Lemberg KM, Lamprecht MR, Skouta R, Zaitsev EM, Gleason CE, et al. Ferroptosis: An iron-dependent form of nonapoptotic cell death. Cell. 2012;149:1060–72.

    CAS  PubMed  PubMed Central  Google Scholar 

  147. 147.

    Jiang L, Kon N, Li T, Wang S-J, Su T, Hibshoosh H, et al. Ferroptosis as a p53-mediated activity during tumour suppression. Nature. 2015;520:57–62.

    CAS  PubMed  PubMed Central  Google Scholar 

  148. 148.

    Li T, Kon N, Jiang L, Tan M, Ludwig T, Zhao Y, et al. Tumor suppression in the absence of p53-mediated cell-cycle arrest, apoptosis, and senescence. Cell. 2012;149:1269–83.

    CAS  PubMed  PubMed Central  Google Scholar 

  149. 149.

    Huang Y, Dai Z, Barbacioru C, Sadée W. Cystine-glutamate transporter SLC7A11 in cancer chemosensitivity and chemoresistance. Cancer Res. 2005;65:7446–54.

    CAS  PubMed  Google Scholar 

  150. 150.

    Liu XX, Li XJ, Zhang B, Liang YJ, Zhou CX, Cao DX, et al. MicroRNA-26b is underexpressed in human breast cancer and induces cell apoptosis by targeting SLC7A11. FEBS Lett. 2011;585:1363–7.

    CAS  PubMed  Google Scholar 

  151. 151.

    Guo W, Zhao Y, Zhang Z, Tan N, Zhao F, Ge C, et al. Disruption of xCT inhibits cell growth via the ROS/autophagy pathway in hepatocellular carcinoma. Cancer Lett. 2011;312:55–61.

    CAS  PubMed  Google Scholar 

  152. 152.

    von Moltke J, Trinidad NJ, Moayeri M, Kintzer AF, Wang SB, van Rooijen N, et al. Rapid induction of inflammatory lipid mediators by the inflammasome in vivo. Nature. 2012;490:107–11.

    Google Scholar 

  153. 153.

    Bergsbaken T, Fink SL, Cookson BT. Pyroptosis: host cell death and inflammation. Nat Rev Microbiol. 2009;7:99–109.

    CAS  PubMed  PubMed Central  Google Scholar 

  154. 154.

    Haldar S, Dru C, Choudhury D, Mishra R, Fernandez A, Biondi S, et al. Inflammation and pyroptosis mediate muscle expansion in an Interleukin-1β (IL-1β)-dependent manner. J Biol Chem. 2015;290:6574–83.

    CAS  PubMed  PubMed Central  Google Scholar 

  155. 155.

    He Y, Kaina B. Are there thresholds in glioblastoma cell death responses triggered by temozolomide? Int J Mol Sci. 2019;20:1562.

    PubMed Central  Google Scholar 

  156. 156.

    Kang C, Xu Q, Martin TD, Li MZ, Demaria M, Aron L, et al. The DNA damage response induces inflammation and senescence by inhibiting autophagy of GATA4. Science. 2015;349:aaa5612.

    PubMed  PubMed Central  Google Scholar 

  157. 157.

    Kang C, Elledge SJ. How autophagy both activates and inhibits cellular senescence. Autophagy. 2016;12:898–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  158. 158.

    Singh K, Matsuyama S, Drazba JA, Almasan A. Autophagy-dependent senescence in response to DNA damage and chronic apoptotic stress. Autophagy. 2012;8:236–51.

    CAS  PubMed  PubMed Central  Google Scholar 

  159. 159.

    Jakhar R, Luijten MNH, Wong AXF, Cheng B, Guo K, Neo SP, et al. Autophagy governs protumorigenic effects of mitotic slippage–induced senescence. Mol Cancer Res. 2018;16:1625–40.

    CAS  PubMed  Google Scholar 

  160. 160.

    Young ARJ, Narita M, Ferreira M, Kirschner K, Sadaie M, Darot JFJ, et al. Autophagy mediates the mitotic senescence transition. Genes Dev. 2009;23:798–803.

    CAS  PubMed  PubMed Central  Google Scholar 

  161. 161.

    Lee SY, Oh JS, Rho JH, Jeong NY, Kwon YH, Jeong WJ, et al. Retinal pigment epithelial cells undergoing mitotic catastrophe are vulnerable to autophagy inhibition. Cell Death Dis. 2014;5:e1303.

    CAS  PubMed  PubMed Central  Google Scholar 

  162. 162.

    Vanpouille-Box C, Demaria S, Formenti SC, Galluzzi L. Cytosolic DNA sensing in organismal tumor control. Cancer Cell. 2018;34:361–78.

    CAS  PubMed  Google Scholar 

  163. 163.

    Ma K, Fu W, Tang M, Zhang C, Hou T, Li R, et al. PTK2-mediated degradation of ATG3 impedes cancer cells susceptible to DNA damage treatment. Autophagy. 2017;13:579–91.

    CAS  PubMed  PubMed Central  Google Scholar 

  164. 164.

    Maskey D, Yousefi S, Schmid I, Zlobec I, Perren A, Friis R, et al. ATG5 is induced by DNA-damaging agents and promotes mitotic catastrophe independent of autophagy. Nat Commun. 2013;4:2130.

    PubMed  PubMed Central  Google Scholar 

  165. 165.

    Lin S-Y, Hsieh S-Y, Fan Y-T, Wei W-C, Hsiao P-W, Tsai D-H, et al. Necroptosis promotes autophagy-dependent upregulation of DAMP and results in immunosurveillance. Autophagy. 2018;14:778–95.

    CAS  PubMed  Google Scholar 

  166. 166.

    Lu JV, Walsh CM. Programmed necrosis and autophagy in immune function. Immunol Rev. 2012;249:205–17.

    CAS  PubMed  PubMed Central  Google Scholar 

  167. 167.

    Menon MB, Gaestel M. MK2–TNF–signaling comes full circle. Trends Biochem Sci. 2018;43:170–9.

    CAS  PubMed  Google Scholar 

  168. 168.

    Rao SG, Jackson JG. SASP: tumor suppressor or promoter? Yes! Trends Cancer. 2016;2:676–87.

    PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Grant from the Russian Science Foundation (19-15-00125). The work in the authors’ laboratories is also supported by the Grants from the Russian Foundation for Basic Research (18-29-09005, 18-015-00211), the Swedish and Stockholm Cancer Societies and the Swedish Childhood Cancer Foundation. We apologize to those authors whose primary works could not be cited owing to space limitations.

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Boris Zhivotovsky or Gelina S. Kopeina.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Prokhorova, E.A., Egorshina, A.Y., Zhivotovsky, B. et al. The DNA-damage response and nuclear events as regulators of nonapoptotic forms of cell death. Oncogene 39, 1–16 (2020). https://doi.org/10.1038/s41388-019-0980-6

Download citation

Further reading

Search

Quick links