Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Decreased FBP1 expression rewires metabolic processes affecting aggressiveness of glioblastoma

Abstract

Radiotherapy is a standard treatment option for patients with glioblastoma (GBM). Although it has high therapeutic efficacy, some proportion of the tumor cells that survive after radiotherapy may cause side effects. In this study, we found that fructose 1,6-bisphosphatase 1 (FBP1), a rate-limiting enzyme in gluconeogenesis, was downregulated upon treatment with ionizing radiation (IR). Ets1, which was found to be overexpressed in IR-induced infiltrating GBM, was suggested to be a transcriptional repressor of FBP1. Furthermore, glucose uptake and extracellular acidification rates were increased upon FBP1 downregulation, which indicated an elevated glycolysis level. We found that emodin, an inhibitor of phosphoglycerate mutase 1 derived from natural substances, significantly suppressed the glycolysis rate and IR-induced GBM migration in in vivo orthotopic xenograft mouse models. We propose that the reduced FBP1 level reprogrammed the metabolic state of GBM cells, and thus, FBP1 is a potential therapeutic target regulating GBM metabolism following radiotherapy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Weller M, Wick W, Aldape K, Brada M, Berger M, Pfister SM, et al. Glioma. Nat Rev Dis Primers. 2015;1:15017.

    PubMed  Google Scholar 

  2. Ostrom QT, Gittleman H, Farah P, Ondracek A, Chen Y, Wolinsky Y, et al. CBTRUS statistical report: primary brain and central nervous system tumors diagnosed in the United States in 2006-2010. Neuro-Oncol. 2013;15 Suppl 2:ii1–56.

    PubMed  PubMed Central  Google Scholar 

  3. Tran B, Rosenthal MA. Survival comparison between glioblastoma multiforme and other incurable cancers. J Clin Neurosci. 2010;17:417–21.

    CAS  PubMed  Google Scholar 

  4. Cooper LA, Gutman DA, Long Q, Johnson BA, Cholleti SR, Kurc T, et al. The proneural molecular signature is enriched in oligodendrogliomas and predicts improved survival among diffuse gliomas. PloS ONE. 2010;5:e12548.

    PubMed  PubMed Central  Google Scholar 

  5. Huse JT, Phillips HS, Brennan CW. Molecular subclassification of diffuse gliomas: seeing order in the chaos. Glia. 2011;59:1190–9.

    PubMed  Google Scholar 

  6. Lee E, Yong RL, Paddison P, Zhu J. Comparison of glioblastoma (GBM) molecular classification methods. Semin Cancer Biol. 2018;53:201–11.

    CAS  PubMed  Google Scholar 

  7. Noushmehr H, Weisenberger DJ, Diefes K, Phillips HS, Pujara K, Berman BP, et al. Identification of a CpG island methylator phenotype that defines a distinct subgroup of glioma. Cancer Cell. 2010;17:510–22.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Verhaak RG, Hoadley KA, Purdom E, Wang V, Qi Y, Wilkerson MD, et al. Integrated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in PDGFRA, IDH1, EGFR, and NF1. Cancer Cell. 2010;17:98–110.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Halliday J, Helmy K, Pattwell SS, Pitter KL, LaPlant Q, Ozawa T, et al. In vivo radiation response of proneural glioma characterized by protective p53 transcriptional program and proneural-mesenchymal shift. Proc Natl Acad Sci USA. 2014;111:5248–53.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Bhat KPL, Balasubramaniyan V, Vaillant B, Ezhilarasan R, Hummelink K, Hollingsworth F, et al. Mesenchymal differentiation mediated by NF-kappaB promotes radiation resistance in glioblastoma. Cancer Cell. 2013;24:331–46.

    CAS  PubMed  Google Scholar 

  11. Thakkar JP, Dolecek TA, Horbinski C, Ostrom QT, Lightner DD, Barnholtz-Sloan JS, et al. Epidemiologic and molecular prognostic review of glioblastoma. Cancer epidemiology, biomarkers & prevention : a publication of the American Association for Cancer Research, cosponsored by the American Society of Preventive. Oncology. 2014;23:1985–96.

    CAS  Google Scholar 

  12. Han X, Xue X, Zhou H, Zhang G. A molecular view of the radioresistance of gliomas. Oncotarget. 2017;8:100931–41.

    PubMed  PubMed Central  Google Scholar 

  13. Ferrer VP, Moura Neto V, Mentlein R. Glioma infiltration and extracellular matrix: key players and modulators. Glia. 2018;66:1542–65.

    PubMed  Google Scholar 

  14. Xie Q, Mittal S, Berens ME. Targeting adaptive glioblastoma: an overview of proliferation and invasion. Neuro-Oncol. 2014;16:1575–84.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Robinson DR, Wu YM, Lonigro RJ, Vats P, Cobain E, Everett J, et al. Integrative clinical genomics of metastatic cancer. Nature. 2017;548:297–303.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144:646–74.

    CAS  PubMed  Google Scholar 

  17. Wolf A, Agnihotri S, Guha A. Targeting metabolic remodeling in glioblastoma multiforme. Oncotarget. 2010;1:552–62.

    PubMed  PubMed Central  Google Scholar 

  18. Lu CL, Qin L, Liu HC, Candas D, Fan M, Li JJ. Tumor cells switch to mitochondrial oxidative phosphorylation under radiation via mTOR-mediated hexokinase II inhibition-a Warburg-reversing effect. PloS ONE. 2015;10:e0121046.

    PubMed  PubMed Central  Google Scholar 

  19. Ke C, Tran K, Chen Y, Di Donato AT, Yu L, Hu Y, et al. Linking differential radiation responses to glioma heterogeneity. Oncotarget. 2014;5:1657–65.

    PubMed  PubMed Central  Google Scholar 

  20. Cong J, Wang X, Zheng X, Wang D, Fu B, Sun R, et al. Dysfunction of natural killer cells by FBP1-induced inhibition of glycolysis during lung cancer progression. Cell Metab. 2018;28:243–55.

    PubMed  Google Scholar 

  21. Li B, Qiu B, Lee DS, Walton ZE, Ochocki JD, Mathew LK, et al. Fructose-1,6-bisphosphatase opposes renal carcinoma progression. Nature. 2014;513:251–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Martinez-Outschoorn UE, Peiris-Pages M, Pestell RG, Sotgia F, Lisanti MP. Cancer metabolism: a therapeutic perspective. Nat Rev Clin Oncol. 2017;14:11–31.

    CAS  PubMed  Google Scholar 

  23. Husain SR, Han J, Au P, Shannon K, Puri RK. Gene therapy for cancer: regulatory considerations for approval. Cancer Gene Ther. 2015;22:554–63.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Shi WK, Zhu XD, Wang CH, Zhang YY, Cai H, Li XL, et al. PFKFB3 blockade inhibits hepatocellular carcinoma growth by impairing DNA repair through AKT. Cell Death Dis. 2018;9:428.

    PubMed  PubMed Central  Google Scholar 

  25. Chen J, Xie J, Jiang Z, Wang B, Wang Y, Hu X. Shikonin and its analogs inhibit cancer cell glycolysis by targeting tumor pyruvate kinase-M2. Oncogene. 2011;30:4297–306.

    CAS  PubMed  Google Scholar 

  26. Li Y, Zhou QL, Sun W, Chandrasekharan P, Cheng HS, Ying Z, et al. Non-canonical NF-kappaB signalling and ETS1/2 cooperatively drive C250T mutant TERT promoter activation. Nat Cell Biol. 2015;17:1327–38.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Verschoor ML, Wilson LA, Verschoor CP, Singh G. Ets-1 regulates energy metabolism in cancer cells. PloS ONE. 2010;5:e13565.

    PubMed  PubMed Central  Google Scholar 

  28. Messeguer X, Escudero R, Farre D, Nunez O, Martinez J, Alba MM. PROMO: detection of known transcription regulatory elements using species-tailored searches. Bioinforma. 2002;18:333–4.

    CAS  Google Scholar 

  29. Li J, Wang Y, Li QG, Xue JJ, Wang Z, Yuan X, et al. Downregulation of FBP1 promotes tumor metastasis and indicates poor prognosis in gastric cancer via regulating epithelial-mesenchymal transition. PloS ONE. 2016;11:e0167857.

    PubMed  PubMed Central  Google Scholar 

  30. Peterson CW, Stoltzman CA, Sighinolfi MP, Han KS, Ayer DE. Glucose controls nuclear accumulation, promoter binding, and transcriptional activity of the MondoA-Mlx heterodimer. Mol Cell Biol. 2010;30:2887–95.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Chang L, Chiang SH, Saltiel AR. Insulin signaling and the regulation of glucose transport. Mol Med. 2004;10:65–71.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Hitosugi T, Zhou L, Elf S, Fan J, Kang HB, Seo JH, et al. Phosphoglycerate mutase 1 coordinates glycolysis and biosynthesis to promote tumor growth. Cancer Cell. 2012;22:585–600.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Le A, Cooper CR, Gouw AM, Dinavahi R, Maitra A, Deck LM, et al. Inhibition of lactate dehydrogenase A induces oxidative stress and inhibits tumor progression. Proc Natl Acad Sci USA. 2010;107:2037–42.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Li S, Wu L, Feng J, Li J, Liu T, Zhang R, et al. In vitro and in vivo study of epigallocatechin-3-gallate-induced apoptosis in aerobic glycolytic hepatocellular carcinoma cells involving inhibition of phosphofructokinase activity. Sci Rep. 2016;6:28479.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Kanehisa M, Goto S, Sato Y, Kawashima M, Furumichi M, Tanabe M. Data, information, knowledge and principle: back to metabolism in KEGG. Nucleic Acids Res. 2014;42:D199–205.

    CAS  PubMed  Google Scholar 

  36. Rahman SA, Bashton M, Holliday GL, Schrader R, Thornton JM. Small molecule subgraph detector (SMSD) toolkit. J Cheminformatics. 2009;1:12.

    Google Scholar 

  37. Kim MS, Park MJ, Kim SJ, Lee CH, Yoo H, Shin SH, et al. Emodin suppresses hyaluronic acid-induced MMP-9 secretion and invasion of glioma cells. Int J Oncol. 2005;27:839–46.

    CAS  PubMed  Google Scholar 

  38. Haris K, Ismail S, Idris Z, Abdullah JM, Yusoff AA. Expression profile of genes modulated by Aloe emodin in human U87 glioblastoma cells. Asian Pac J Cancer Prev. 2014;15:4499–505.

    PubMed  Google Scholar 

  39. Hitosugi T, Zhou L, Fan J, Elf S, Zhang L, Xie J, et al. Tyr26 phosphorylation of PGAM1 provides a metabolic advantage to tumours by stabilizing the active conformation. Nat Commun. 2013;4:1790.

    PubMed  Google Scholar 

  40. Wang C, Zhang D, Ma H, Liu J. Neuroprotective effects of emodin-8-O-beta-D-glucoside in vivo and in vitro. Eur J Pharmacol. 2007;577:58–63.

    CAS  PubMed  Google Scholar 

  41. Brady ST, Siegel GJ, Albers RW, Price DL. Basic neurochemistry: principles of molecular, cellular, and medical neurobiology. Amsterdam; Boston: Elsevier Academic Press; 2012.

    Google Scholar 

  42. Seyfried TN, Flores R, Poff AM, D'Agostino DP, Mukherjee P. Metabolic therapy: a new paradigm for managing malignant brain cancer. Cancer Lett. 2015;356:289–300.

    CAS  PubMed  Google Scholar 

  43. Winter SF, Loebel F, Dietrich J. Role of ketogenic metabolic therapy in malignant glioma: a systematic review. Crit Rev Oncol/Hematol. 2017;112:41–58.

    Google Scholar 

  44. Zuccoli G, Marcello N, Pisanello A, Servadei F, Vaccaro S, Mukherjee P, et al. Metabolic management of glioblastoma multiforme using standard therapy together with a restricted ketogenic diet: case report. Nutr Metab. 2010;7:33.

    Google Scholar 

  45. Han T, Kang D, Ji D, Wang X, Zhan W, Fu M, et al. How does cancer cell metabolism affect tumor migration and invasion? Cell Adhes Migr. 2013;7:395–403.

    Google Scholar 

  46. Liu H, Liu N, Cheng Y, Jin W, Zhang P, Wang X, et al. Hexokinase 2 (HK2), tumor promoter in glioma, is downregulated by miR-218/Bmi1 pathway. PLoS ONE. 2017;12:e0189353.

    PubMed  PubMed Central  Google Scholar 

  47. Abbadi S, Rodarte JJ, Abutaleb A, Lavell E, Smith CL, Ruff W, et al. Glucose-6-phosphatase is a key metabolic regulator of glioblastoma invasion. Mol Cancer Res. 2014;12:1547–59.

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Desvergne B, Michalik L, Wahli W. Transcriptional regulation of metabolism. Physiol Rev. 2006;86:465–514.

    CAS  PubMed  Google Scholar 

  49. Yoon JC, Puigserver P, Chen G, Donovan J, Wu Z, Rhee J, et al. Control of hepatic gluconeogenesis through the transcriptional coactivator PGC-1. Nature. 2001;413:131–8.

    CAS  PubMed  Google Scholar 

  50. Zhang W, Patil S, Chauhan B, Guo S, Powell DR, Le J, et al. FoxO1 regulates multiple metabolic pathways in the liver: effects on gluconeogenic, glycolytic, and lipogenic gene expression. J Biol Chem. 2006;281:10105–17.

    CAS  PubMed  Google Scholar 

  51. Graziose R, Lila MA, Raskin I. Merging traditional Chinese medicine with modern drug discovery technologies to find novel drugs and functional foods. Curr Drug Discov Technol. 2010;7:2–12.

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Parekh HS, Liu G, Wei MQ. A new dawn for the use of traditional Chinese medicine in cancer therapy. Mol Cancer. 2009;8:21.

    PubMed  PubMed Central  Google Scholar 

  53. Wang Y, Wei Z, Liu L, Cheng Z, Lin Y, Ji F, et al. Crystal structure of human B-type phosphoglycerate mutase bound with citrate. Biochem Biophys Res Commun. 2005;331:1207–15.

    CAS  PubMed  Google Scholar 

  54. Li X, Tang S, Wang QQ, Leung EL, Jin H, Huang Y, et al. Identification of epigallocatechin-3- gallate as an inhibitor of phosphoglycerate mutase 1. Front Pharmacol. 2017;8:325.

    PubMed  PubMed Central  Google Scholar 

  55. Jiang X, Sun Q, Li H, Li K, Ren X. The role of phosphoglycerate mutase 1 in tumor aerobic glycolysis and its potential therapeutic implications. Int J Cancer. 2014;135:1991–6.

    CAS  PubMed  Google Scholar 

  56. Soeda A, Park M, Lee D, Mintz A, Androutsellis-Theotokis A, McKay RD, et al. Hypoxia promotes expansion of the CD133-positive glioma stem cells through activation of HIF-1alpha. Oncogene. 2009;28:3949–59.

    CAS  PubMed  Google Scholar 

  57. Lee S, Son B, Jeon J, Park G, Kim H, Kang H, et al. Decreased hepatic lactotransferrin induces hepatic steatosis in chronic non-alcoholic fatty liver disease model. Cell Physiol Biochem. 2018;47:2233–49.

    CAS  PubMed  Google Scholar 

  58. Kang J, Kim W, Lee S, Kwon D, Chun J, Son B, et al. TFAP2C promotes lung tumorigenesis and aggressiveness through miR-183- and miR-33a-mediated cell cycle regulation. Oncogene. 2017;36:1585–96.

    CAS  PubMed  Google Scholar 

  59. Son B, Kwon T, Lee S, Han I, Kim W, Youn H, et al. CYP2E1 regulates the development of radiation-induced pulmonary fibrosis via ER stress- and ROS-dependent mechanisms. Am J Physiol Lung Cell Mol Physiol. 2017;313:L916–29.

    PubMed  Google Scholar 

  60. Kim W, Youn H, Seong KM, Yang HJ, Yun YJ, Kwon T, et al. PIM1-activated PRAS40 regulates radioresistance in non-small cell lung cancer cells through interplay with FOXO3a, 14-3-3 and protein phosphatases. Radiat Res. 2011;176:539–52.

    CAS  PubMed  Google Scholar 

  61. Lee S, Kim D, Kang J, Kim E, Kim W, Youn H, et al. Surfactant protein B suppresses lung cancer progression by inhibiting secretory phospholipase A2 activity and arachidonic acid production. Cell Physiol Biochem. 2017;42:1684–700.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Nuclear Safety Research Program through the Korea Foundation Of Nuclear Safety (KoFONS) using the financial resource granted by the Nuclear Safety and Security Commission (NSSC) of the Republic of Korea (No. 1805019). We thank Dr. Akio Soeda (Gifu University) for providing patient-derived X01 GBM cells.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to BuHyun Youn.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Son, B., Lee, S., Kim, H. et al. Decreased FBP1 expression rewires metabolic processes affecting aggressiveness of glioblastoma. Oncogene 39, 36–49 (2020). https://doi.org/10.1038/s41388-019-0974-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-019-0974-4

This article is cited by

Search

Quick links