The dysfunction of BP180/collagen XVII in keratinocytes promotes melanoma progression


BP180, also termed collagen XVII, is a hemidesmosomal transmembrane glycoprotein expressed in basal keratinocytes, and functions as a cell–matrix adhesion molecule in the dermal–epidermal junction of the skin. Its function, other than cell–matrix adhesion, remains unclear. We generated a mouse strain with BP180 dysfunction (termed ∆NC16A), which develops spontaneous skin inflammation accompanied by an influx of myeloid derived suppressor cells (MDSCs). We used the B16 mouse melanoma model to demonstrate that BP180 dysfunction in either skin or basal keratinocytes promotes MDSC influx into skin and tumor progression. MDSC depletion reduced tumor progression in ∆NC16A mice, demonstrating a critical role for BP180 dysfunction-driven MDSCs in melanoma progression. This study provides the first direct evidence that BP180, a cell–cell matrix adhesion molecule, possesses antitumor function through modulating infiltration of MDSCs. Basal keratinocytes actively participate in skin microenvironment changes caused by BP180 dysfunction. ∆NC16A mice could be a new animal model to study the melanoma microenvironment.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6


  1. 1.

    Hammers CM, Stanley JR. Mechanisms of disease: pemphigus and bullous pemphigoid. Annu Rev Pathol Mech Dis. 2016;11:175–97.

    CAS  Google Scholar 

  2. 2.

    Koster J, Geerts D, Favre B, Borradori L, Sonnenberg A. Analysis of the interactions between BP180, BP230, plectin and the integrin alpha6beta4 important for hemidesmosome assembly. J Cell Sci. 2003;116:387–99.

    CAS  PubMed  Google Scholar 

  3. 3.

    Hopkinson SB, Jones JC. The N terminus of the transmembrane protein BP180 interacts with the N-terminal domain of BP230, thereby mediating keratin cytoskeleton anchorage to the cell surface at the site of the hemidesmosome. Mol Biol Cell. 2000;11:277–86.

    CAS  PubMed  PubMed Central  Google Scholar 

  4. 4.

    Margadant C, Frijns E, Wilhelmsen K, Sonnenberg A. Regulation of hemidesmosome disassembly by growth factor receptors. Curr Opin Cell Biol. 2008;20:589–96.

    CAS  PubMed  Google Scholar 

  5. 5.

    Leighty L, Li N, Diaz LA, Liu Z. Experimental models for the autoimmune and inflammatory blistering disease, Bullous pemphigoid. Arch Dermatol Res. 2007;299:417–22.

    CAS  PubMed  PubMed Central  Google Scholar 

  6. 6.

    McGrath JA, Galalica B, Christiano AM, Li K, Owaribe K, McMillian JR, et al. Mutation in the 180-kD bulleus pemphigoid antigen (BPAG2), a hemidesmosomal transmembreane collagen (COL17A1), in generalized atrophic benign epidermolysis bullosa. Nat Genet. 1995;11:83–6.

    CAS  PubMed  Google Scholar 

  7. 7.

    Van den Bergh F, Eliason SL, Burmeister BT, Giudice GJ. Collagen XVII (BP180) modulates keratinocyte expression of the proinflammatory chemokine, IL-8. Exp Dermatol. 2012;21:605–11.

    PubMed  PubMed Central  Google Scholar 

  8. 8.

    Giudice GJ, Emery DJ, Diaz LA. Cloning and primary structural analysis of the bullous pemphigoid autoantigen BP180. J Investig Dermatol. 1992;99:243–50.

    CAS  PubMed  Google Scholar 

  9. 9.

    Nishie W, Sawamura D, Goto M, Ito K, Shibaki A, McMillan JR, et al. Humanization of autoantigen. Nat Med. 2007;13:378–83.

    CAS  PubMed  Google Scholar 

  10. 10.

    Liu Z, Sui W, Zhao M, Li Z, Li N, Thresher R, et al. Subepidermal blistering induced by human autoantibodies to BP180 requires innate immune players in a humanized bullous pemphigoid mouse model. J Autoimmun. 2008;31:331–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. 11.

    Jonkman MF, Jong MCJM De, Heeres K, Pas HH, Meer JB Van Der, Owaribe K et al. 180-kD Bullous Pemphigoid Antigen (BP180) is deficient in generalized atrophic benign epidermolysis bullosa. 1982;1345–52.

  12. 12.

    Hurskainen T, Moilanen J, Sormunen R, Franzke C-W, Soininen R, Loeffek S, et al. Transmembrane collagen XVII is a novel component of the glomerular filtration barrier. Cell Tissue Res. 2012;348:579–88.

    CAS  PubMed  Google Scholar 

  13. 13.

    Tanimura S, Tadokoro Y, Inomata K, Binh NT, Nishie W, Yamazaki S, et al. Hair follicle stem cells provide a functional niche for melanocyte stem cells. Cell Stem Cell 2011;8:177–87.

    CAS  PubMed  Google Scholar 

  14. 14.

    Matsumura H, Mohri Y, Binh NT, Morinaga H, Fukuda M, Ito M, et al. Hair follicle aging is driven by transepidermal elimination of stem cells via COL17A1 proteolysis. Science. 2016;351:1–14.

    Google Scholar 

  15. 15.

    Parikka M, Kainulainen T, Tasanen K, Väänänen A, Bruckner-Tuderman L, Salo T. Alterations of collagen XVII expression during transformation of oral epithelium to dysplasia and carcinoma. J Histochem Cytochem. 2003;51:921–9.

    CAS  PubMed  Google Scholar 

  16. 16.

    Parikka M, Nissinen L, Kainulainen T, Bruckner-Tuderman L, Salo T, Heino J, et al. Collagen XVII promotes integrin-mediated squamous cell carcinoma transmigration—a novel role for αIIb integrin and tirofiban. Exp Cell Res. 2006;312:1431–8.

    CAS  PubMed  Google Scholar 

  17. 17.

    Stelkovics E, Korom I, Marczinovits I, Molnar J, Rasky K, Raso E, et al. Collagen XVII/BP180 protein expression in squamous cell carcinoma of the skin detected with novel monoclonal antibodies in archived tissues using tissue microarrays and digital microscopy. Appl Immunohistochem Mol Morphol. 2008;16:433–41.

    CAS  PubMed  Google Scholar 

  18. 18.

    Parikka M. Altered expression of collagen XVII in ameloblastomas and basal cell carcinomas. J Oral Pathol. 2001;589–95.

    CAS  PubMed  Google Scholar 

  19. 19.

    Krenacs T, Kiszner G, Stelkovics E, Balla P, Teleki I, Nemeth I, et al. Collagen XVII is expressed in malignant but not in benign melanocytic tumors and it can mediate antibody induced melanoma apoptosis. Histochem Cell Biol. 2012;138:653–67.

    CAS  PubMed  Google Scholar 

  20. 20.

    Golan T, Messer AR, Amitai-Lange A, Melamed Z, Ohana R, Bell RE, et al. Interactions of melanoma cells with distal keratinocytes trigger metastasis via notch signaling inhibition of MITF. Mol Cell. 2015;59:664–76.

    CAS  PubMed  Google Scholar 

  21. 21.

    Zhang Y, Hwang B-J, Liu Z, Li N, Lough K, Williams SE, et al. BP180 dysfunction triggers spontaneous skin inflammation in mice. Proc Natl Acad Sci USA. 2018;115:6434–9.

    CAS  PubMed  Google Scholar 

  22. 22.

    Hanahan D, Weinberg RA, Pan KH, Shay JW, Cohen SN, Taylor MB, et al. Hallmarks of cancer: the next generation. Cell 2011;144:646–74.

    CAS  Google Scholar 

  23. 23.

    Colotta F, Allavena P, Sica A, Garlanda C, Mantovani A. Cancer-related inflammation, the seventh hallmark of cancer: links to genetic instability. Carcinogenesis. 2009;30:1073–81.

    CAS  Google Scholar 

  24. 24.

    Hurskainen T, Kokkonen N, Sormunen R, Jackow J, Löffek S, Soininen R et al. Deletion of the major bullous pemphigoid epitope region of collagen XVII induces blistering, autoimmunization, and itching in mice. J Investig Dermatol. 2014;1–8.

  25. 25.

    Aho S, Uitto J. 180-kD bullous pemphigoid antigen/Type XVII collagen: tissue-specific expression and molecular interactions with keratin 18. 1999;367:356–67.

  26. 26.

    Di Meglio P, Perera GK, Nestle FO. The multitasking organ: recent insights into skin immune function. Immunity. 2011;35:857–69.

    PubMed  Google Scholar 

  27. 27.

    Bangert C, Brunner PM, Stingl G. Immune functions of the skin. Clin Dermatol. 2011;29:360–76.

    PubMed  Google Scholar 

  28. 28.

    Van Kilsdonk JWJ, Bergers M, Van Kempen LC, Schalkwijk GWM, Swart GWM. Keratinocytes drive melanoma invasion in a reconstructed skin model. Melanoma Res. 2010;20:372–80.

    PubMed  Google Scholar 

  29. 29.

    Tang L, Wang K. Chronic inflammation in skin malignancies. J Mol Signal. 2016;11:1–13.

    Google Scholar 

  30. 30.

    Ortiz ML, Kumar V, Martner A, Mony S, Donthireddy L, Condamine T, et al. Immature myeloid cells directly contribute to skin tumor development by recruiting IL-17–producing CD4+ T cells. J Exp Med. 2015;212:351–67.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. 31.

    Lund AW, Medler TR, Leachman SA, Coussens LM. Lymphatic vessels, inflammation, and immunity in skin cancer. Cancer Discov. 2016;6:22–35.

    CAS  PubMed  Google Scholar 

  32. 32.

    Bleehen S. Normal pigmentation, radiation and response to sun exposure. In: Champion R, Burns D, Breathnach S, editors. Textbook of dermatology. London: Blackwell-Science; 1998. p. 1765–7.

    Google Scholar 

  33. 33.

    Silvers WK. The coat colors of mice: a model for mammalian gene action and interaction. In: Altman PL, K DD, editors. Inbred and genetically defined strains of laboratory animals, Part1 Mouse and rat. New York: Springer-Verlag; 1979. p. 1979.

  34. 34.

    Rozenberg GI, Monahan KB, Torrice C, Bear JE, Sharpless NE. Metastasis in an orthotopic murine model of melanoma is independent of RAS/RAF mutation. Melanoma Res. 2010;20:361–71.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. 35.

    Bobek V, Kolostova K, Pinterova D, Kacprzak G, Adamiak J, Kolodziej J, et al. A clinically relevant, syngeneic model of spontaneous, highly metastatic B16 mouse melanoma. Anticancer Res. 2010;30:4799–804.

    PubMed  Google Scholar 

  36. 36.

    Kumar V, Patel S, Tcyganov E, Gabrilovich DI. The nature of myeloid-derived suppressor cells in the tumor microenvironment. Trends Immunol. 2016;37:208–20.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. 37.

    Sawanobori Y, Ueha S, Kurachi M, Shimaoka T, Talmadge JE, Abe J, et al. Chemokine-mediated rapid turnover of myeloid-derived suppressor cells in tumor-bearing mice. Blood. 2008;111:5457–66.

    CAS  PubMed  Google Scholar 

  38. 38.

    Talmadge JE, Gabrilovich DI. History of myeloid-derived suppressor cells. Nat Rev Cancer. 2013;13:739–52.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. 39.

    Youn J-I, Nagaraj S, Collazo M, Gabrilovich DI. Subsets of myeloid-derived suppressor cells in tumor-bearing mice. J Immunol. 2008;181:5791–802.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. 40.

    Bronte V, Brandau S, Chen S-H, Colombo MP, Frey AB, Greten TF, et al. Recommendations for myeloid-derived suppressor cell nomenclature and characterization standards. Nat Commun. 2016;7:12150.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. 41.

    Murdoch C, Muthana M, Coffelt SB, Lewis CE. The role of myeloid cells in the promotion of tumour angiogenesis. Nat Rev Cancer. 2008;8:618–31.

    CAS  PubMed  Google Scholar 

  42. 42.

    Condamine T, Ramachandran I, Youn J-I, Gabrilovich DI. Regulation of tumor metastasis by myeloid-derived suppressor cells. Annu Rev Med. 2015;66:97–110.

    CAS  PubMed  Google Scholar 

  43. 43.

    Ostrand-Rosenberg S, Sinha P. MDSCs: linking inflammation and cancer. J Immunol. 2009;182:4499–506.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. 44.

    Parikka M, Nissinen L, Kainulainen T, Bruckner-Tuderman L, Salo T, Heino J, et al. Collagen XVII promotes integrin-mediated squamous cell carcinoma transmigration—a novel role for alphaIIb integrin and tirofiban. Exp Cell Res. 2006;312:1431–8.

    CAS  PubMed  Google Scholar 

  45. 45.

    Fine J-D. Inherited epidermolysis bullosa. Orphanet J Rare Dis. 2010;5:561–8.

    Google Scholar 

  46. 46.

    Bubier JA, Sproule TJ, Alley LM, Webb CM, Fine J-D, Roopenian DC, et al. A mouse model of generalized non-Herlitz junctional epidermolysis bullosa. J Investig Dermatol. 2010;130:1819–28.

    CAS  PubMed  Google Scholar 

  47. 47.

    Fine JD. Inherited epidermolysis bullosa: past, present, and future. Ann NY Acad Sci 2010;1194:213–22.

    CAS  PubMed  Google Scholar 

  48. 48.

    Kiritsi D, Kern JS, Schumann H, Kohlhase J, Has C, Bruckner-Tuderman L. Molecular mechanisms of phenotypic variability in junctional epidermolysis bullosa. J Med Genet. 2011;48:450–7.

    CAS  PubMed  Google Scholar 

  49. 49.

    Mabuchi E, Umegaki N, Murota H, Nakamura T, Tamai K, Katayama I. Oral steroid improves bullous pemphigoid-like clinical manifestations in non-Herlitz junctional epidermolysis bullosa with COL17A1 mutation. Br J Dermatol. 2007;157:596–8.

    CAS  PubMed  Google Scholar 

  50. 50.

    Fine JD, Johnson LB, Weiner M, Li KP, Suchindran C. Epidermolysis bullosa and the risk of life-threatening cancers: the National EB Registry experience, 1986–2006. J Am Acad Dermatol. 2009;60:203–11.

    Google Scholar 

  51. 51.

    Mallipeddi R. Epidermolysis bullosa and cancer. Clin Exp Dermatol. 2002;27:616–23.

    CAS  PubMed  PubMed Central  Google Scholar 

  52. 52.

    Fine J-D. Squamous cell carcinoma and junctional epidermolysis bullosa. J Am Acad Dermatol. 2012;66:856–7.

    PubMed  Google Scholar 

  53. 53.

    Youn J-I, Gabrilovich DI. The biology of myeloid-derived suppressor cells: the blessing and the curse of morphological and functional heterogeneity. Eur J Immunol. 2010;40:2969–75.

    CAS  PubMed  PubMed Central  Google Scholar 

  54. 54.

    Van Deventer HW, Burgents JE, Wu QP, Woodford RMT, Brickey WJ, Allen IC, et al. The inflammasome component Nlrp3 impairs antitumor vaccine by enhancing the accumulation of tumor-associated myeloid-derived suppressor cells. Cancer Res. 2010;70:10161–9.

    PubMed  PubMed Central  Google Scholar 

  55. 55.

    Williams SE, Beronja S, Pasolli HA, Fuchs E. Asymmetric cell divisions promote Notch-dependent epidermal differentiation. Nature. 2011;470:353–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  56. 56.

    Chen R, Ning G, Zhao M, Fleming MG, Diaz La, Werb Z, et al. Mast cells play a key role in neutrophil recruitment in experimental bullous pemphigoid. J Clin Investig. 2001;108:1151–8.

    CAS  PubMed  Google Scholar 

  57. 57.

    Chen R, Fairley Ja, Zhao M-L, Giudice GJ, Zillikens D, Diaz La, et al. Macrophages, but not T and B lymphocytes, are critical for subepidermal blister formation in experimental bullous pemphigoid: macrophage-mediated neutrophil infiltration depends on mast cell activation. J Immunol. 2002;169:3987–92.

    CAS  PubMed  Google Scholar 

  58. 58.

    Bruce DW, Stefanski HE, Vincent BG, Dant TA, Reisdorf S, Bommiasamy H, et al. Type 2 innate lymphoid cells treat and prevent acute gastrointestinal graft-versus-host disease. J Clin Investig. 2017;127:1813–25.

    PubMed  Google Scholar 

Download references


We thank Dr. Dennis Loop for providing the Krt-14 promoter driven Cre mice. We thank Dr. Donna Culton and Susan McCray for assistance in Flow Cytometry. We thank Dr. Yisong Wan and Dr. Jenny PY Ting for their assistance. We thank the UNC Flow Cytometry Core Facility, which is supported in part by P30 CA016086 Cancer Center Core Support Grant to the UNC Lineberger Comprehensive Cancer Center, for their assistance in flow cytometry analyses. This work was supported by the NIH (R01 AI40768 and R01 AR072694 to ZL), the 15 UNC Cancer Center Research Award (to ZL) and UNC Graduate School Dissertation 16 Completion Fellowship (to BJH) and P01CA206980 (to NT).

Authors contributions

Conception and design: BJH, MS, NL, ZL. Development of methodology: BJH, JB, SW. Acquisition of data (provided animals, acquired and managed patients, provided facilities, etc.): BJH, JB, ZL, JC, CCS, ZY. Analysis and interpretation of data (e.g., statistical analysis, biostatistics, computational analysis): BJH, JB, YS, MS, NL, NT, ZL. Writing, review, and/or revision of the manuscript: BJH, YS, ZY, JC, MS, NL, NT, ZL. Administrative, technical, or material support (i.e., reporting or organizing data, constructing databases): PG, SB, KL, YS, BJH. Study supervision: MS, NL, ZL.

Author information



Corresponding author

Correspondence to Zhi Liu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hwang, B., Zhang, Y., Brozowski, J.M. et al. The dysfunction of BP180/collagen XVII in keratinocytes promotes melanoma progression. Oncogene 38, 7491–7503 (2019).

Download citation

Further reading