Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

MALT1 is a critical mediator of PAR1-driven NF-κB activation and metastasis in multiple tumor types

Abstract

Protease-activated receptor 1 (PAR1), a thrombin-responsive G protein-coupled receptor (GPCR), is implicated in promoting metastasis in multiple tumor types, including both sarcomas and carcinomas, but the molecular mechanisms responsible remain largely unknown. We previously discovered that PAR1 stimulation in endothelial cells leads to activation of NF-κB, mediated by a protein complex comprised of CARMA3, Bcl10, and the MALT1 effector protein (CBM complex). Given the strong association between NF-κB and metastasis, we hypothesized that this CBM complex could play a critical role in the PAR1-driven metastatic progression of specific solid tumors. In support of our hypothesis, we demonstrate that PAR1 stimulation results in NF-κB activation in both osteosarcoma and breast cancer, which is suppressed by siRNA-mediated MALT1 knockdown, suggesting that an intact CBM complex is required for the response in both tumor cell types. We identify several metastasis-associated genes that are upregulated in a MALT1-dependent manner after PAR1 stimulation in cancer cells, including those encoding the matrix remodeling protein, MMP9, and the cytokines, IL-1β and IL-8. Further, exogenous expression of PAR1 in MCF7 breast cancer cells confers highly invasive and metastatic behavior which can be blocked by CRISPR/Cas9-mediated MALT1 knockout. Importantly, we find that PAR1 stimulation induces MALT1 protease activity in both osteosarcoma and breast cancer cells, an activity that is mechanistically linked to NF-κB activation and potentially other responses associated with aggressive phenotype. Several small molecule MALT1 protease inhibitors have recently been described that could therefore represent promising new therapeutics for the prevention and/or treatment of PAR1-driven tumor metastasis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Shi X, Gangadharan B, Brass LF, Ruf W, Mueller BM. Protease-activated receptors (PAR1 and PAR2) contribute to tumor cell motility and metastasis. Mol Cancer Res. 2004;2:395–402.

    CAS  PubMed  Google Scholar 

  2. Boire A, Covic L, Agarwal A, Jacques S, Sherifi S, Kuliopulos A. PAR1 is a matrix metalloprotease-1 receptor that promotes invasion and tumorigenesis of breast cancer cells. Cell. 2005;120:303–13.

    Article  CAS  PubMed  Google Scholar 

  3. Cisowski J, O'Callaghan K, Kuliopulos A, Yang J, Nguyen N, Deng Q, et al. Targeting protease-activated receptor-1 with cell-penetrating pepducins in lung cancer. Am J Pathol. 2011;179:513–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Foley CJ, Luo C, O'Callaghan K, Hinds PW, Covic L, Kuliopulos A. Matrix metalloprotease-1a promotes tumorigenesis and metastasis. J Biol Chem. 2012;287:24330–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Lin C, Majoor CJ, Roelofs JJ, de Kruif MD, Horlings HM, Borensztajn K, et al. Potential importance of protease activated receptor (PAR)-1 expression in the tumor stroma of non-small-cell lung cancer. BMC Cancer. 2017;17:113.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Villares GJ, Zigler M, Bar-Eli M. The emerging role of the thrombin receptor (PAR-1) in melanoma metastasis–a possible therapeutic target. Oncotarget. 2011;2:8–17.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Zigler M, Kamiya T, Brantley EC, Villares GJ, Bar-Eli M. PAR-1 and thrombin: the ties that bind the microenvironment to melanoma metastasis. Cancer Res. 2011;71:6561–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Yuan TC, Lin MF. Protease-activated receptor 1: a role in prostate cancer metastasis. Clin Prostate Cancer. 2004;3:189–91.

    Article  CAS  PubMed  Google Scholar 

  9. Tantivejkul K, Loberg RD, Mawocha SC, Day LL, John LS, Pienta BA, et al. PAR1-mediated NFkappaB activation promotes survival of prostate cancer cells through a Bcl-xL-dependent mechanism. J Cell Biochem. 2005;96:641–52.

    Article  CAS  PubMed  Google Scholar 

  10. Chay CH, Cooper CR, Gendernalik JD, Dhanasekaran SM, Chinnaiyan AM, Rubin MA, et al. A functional thrombin receptor (PAR1) is expressed on bone-derived prostate cancer cell lines. Urology. 2002;60:760–5.

    Article  PubMed  Google Scholar 

  11. Queiroz KC, Shi K, Duitman J, Aberson HL, Wilmink JW, van Noesel CJ, et al. Protease-activated receptor-1 drives pancreatic cancer progression and chemoresistance. Int J Cancer. 2014;135:2294–304.

    Article  CAS  PubMed  Google Scholar 

  12. Chen HT, Tsou HK, Tsai CH, Kuo CC, Chiang YK, Chang CH, et al. Thrombin enhanced migration and MMPs expression of human chondrosarcoma cells involves PAR receptor signaling pathway. J Cell Physiol. 2010;223:737–45.

    CAS  PubMed  Google Scholar 

  13. Han N, Jin K, He K, Cao J, Teng L. Protease-activated receptors in cancer: a systematic review. Oncol Lett. 2011;2:599–608.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Hernandez NA, Correa E, Avila EP, Vela TA, Perez VM. PAR1 is selectively over expressed in high grade breast cancer patients: a cohort study. J Transl Med. 2009;7:47.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Yang E, Cisowski J, Nguyen N, O'Callaghan K, Xu J, Agarwal A, et al. Dysregulated protease activated receptor 1 (PAR1) promotes metastatic phenotype in breast cancer through HMGA2. Oncogene. 2016;35:1529–40.

    Article  CAS  PubMed  Google Scholar 

  16. Hernandez-Rodriguez NA, Correa E, Sotelo R, Gomez-Ruiz C, Contreras-Paredes A, Green L. Thrombin is present in the lungs of patients with primary extremity osteosarcoma and pulmonary metastases. Int J Biol Markers. 2002;17:189–95.

    Article  PubMed  Google Scholar 

  17. Borensztajn K, Aberson H, Groot AP, Peppelenbosch MP, Spek CA. A mechanism for thrombin-dependent lung metastasis in patients with osteosarcoma. Br J Haematol. 2009;145:548–50.

    Article  CAS  PubMed  Google Scholar 

  18. Sano T, Gabazza EC, Zhou H, Takeya H, Hayashi T, Ido M, et al. The zymogen prothrombin stimulates cell locomotion and calcium influx in murine osteosarcoma cells by different mechanism from thrombin. Int J Oncol. 1999;15:1197–203.

    CAS  PubMed  Google Scholar 

  19. Radjabi AR, Sawada K, Jagadeeswaran S, Eichbichler A, Kenny HA, Montag A, et al. Thrombin induces tumor invasion through the induction and association of matrix metalloproteinase-9 and beta1-integrin on the cell surface. J Biol Chem. 2008;283:2822–34.

    Article  CAS  PubMed  Google Scholar 

  20. Ichikawa J, Cole HA, Magnussen RA, Mignemi NA, Butler M, Holt GE, et al. Thrombin induces osteosarcoma growth, a function inhibited by low molecular weight heparin in vitro and in vivo: procoagulant nature of osteosarcoma. Cancer. 2012;118:2494–506.

    Article  CAS  PubMed  Google Scholar 

  21. Delekta PC, Apel IJ, Gu S, Siu K, Hattori Y, McAllister-Lucas LM, et al. Thrombin-dependent NF-κB activation and monocyte/endothelial adhesion are mediated by the CARMA3.Bcl10.MALT1 signalosome. J Biol Chem. 2010;285:41432–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Lenz G, Davis RE, Ngo VN, Lam L, George TC, Wright GW, et al. Oncogenic CARD11 mutations in human diffuse large B cell lymphoma. Science. 2008;319:1676–9.

    Article  CAS  PubMed  Google Scholar 

  23. Bohers E, Mareschal S, Bouzelfen A, Marchand V, Ruminy P, Maingonnat C, et al. Targetable activating mutations are very frequent in GCB and ABC diffuse large B-cell lymphoma. Genes Chromosomes Cancer. 2014;53:144–53.

    Article  CAS  PubMed  Google Scholar 

  24. Bohers E, Mareschal S, Bertrand P, Viailly PJ, Dubois S, Maingonnat C, et al. Activating somatic mutations in diffuse large B-cell lymphomas: lessons from next generation sequencing and key elements in the precision medicine era. Leuk Lymphoma. 2015;56:1213–22.

    Article  CAS  PubMed  Google Scholar 

  25. McAllister-Lucas LM, Ruland J, Siu K, Jin X, Gu S, Kim DS, et al. CARMA3/Bcl10/MALT1-dependent NF-kappaB activation mediates angiotensin II-responsive inflammatory signaling in nonimmune cells. Proc Natl Acad Sci USA. 2007;104:139–44.

    Article  CAS  PubMed  Google Scholar 

  26. McAllister-Lucas LM, Jin X, Gu S, Siu K, McDonnell S, Ruland J, et al. The CARMA3-Bcl10-MALT1 signalosome promotes angiotensin II-dependent vascular inflammation and atherogenesis. J Biol Chem. 2010;285:25880–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Rehman AO, Wang CY. CXCL12/SDF-1 alpha activates NF-kappaB and promotes oral cancer invasion through the Carma3/Bcl10/Malt1 complex. Int J Oral Sci. 2009;1:105–18.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Mahanivong C, Chen HM, Yee SW, Pan ZK, Dong Z, Huang S. Protein kinase C alpha-CARMA3 signaling axis links Ras to NF-kappa B for lysophosphatidic acid-induced urokinase plasminogen activator expression in ovarian cancer cells. Oncogene. 2008;27:1273–80.

    Article  CAS  PubMed  Google Scholar 

  29. McAuley JR, Freeman TJ, Ekambaram P, Lucas PC, McAllister-Lucas LM. CARMA3 is a critical mediator of G protein-coupled receptor and receptor tyrosine kinase-driven solid tumor pathogenesis. Front Immunol. 2018;9:1887.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Afonina IS, Elton L, Carpentier I, Beyaert R. MALT1—a universal soldier: multiple strategies to ensure NF-kappaB activation and target gene expression. FEBS J. 2015;282:3286–97.

    Article  CAS  PubMed  Google Scholar 

  31. Jaworski M, Thome M. The paracaspase MALT1: biological function and potential for therapeutic inhibition. Cell Mol Life Sci. 2016;73:459–73.

    Article  CAS  PubMed  Google Scholar 

  32. Hailfinger S, Nogai H, Pelzer C, Jaworski M, Cabalzar K, Charton JE, et al. Malt1-dependent RelB cleavage promotes canonical NF-kappaB activation in lymphocytes and lymphoma cell lines. Proc Natl Acad Sci USA. 2011;108:14596–601.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Coornaert B, Baens M, Heyninck K, Bekaert T, Haegman M, Staal J, et al. T cell antigen receptor stimulation induces MALT1 paracaspase-mediated cleavage of the NF-kappaB inhibitor A20. Nat Immunol. 2008;9:263–71.

    Article  CAS  PubMed  Google Scholar 

  34. Staal J, Driege Y, Bekaert T, Demeyer A, Muyllaert D, Van Damme P, et al. T-cell receptor-induced JNK activation requires proteolytic inactivation of CYLD by MALT1. EMBO J. 2011;30:1742–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Deryugina EI, Quigley JP. Matrix metalloproteinases and tumor metastasis. Cancer Metastasis Rev. 2006;25:9–34.

    Article  CAS  PubMed  Google Scholar 

  36. Luo JL, Kamata H, Karin M. IKK/NF-kappaB signaling: balancing life and death–a new approach to cancer therapy. J Clin Investig. 2005;115:2625–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Toruner M, Fernandez-Zapico M, Sha JJ, Pham L, Urrutia R, Egan LJ. Antianoikis effect of nuclear factor-kappaB through up-regulated expression of osteoprotegerin, BCL-2, and IAP-1. J Biol Chem. 2006;281:8686–96.

    Article  CAS  PubMed  Google Scholar 

  38. Biswas DK, Shi Q, Baily S, Strickland I, Ghosh S, Pardee AB, et al. NF-kappa B activation in human breast cancer specimens and its role in cell proliferation and apoptosis. Proc Natl Acad Sci USA. 2004;101:10137–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Smith SM, Lyu YL, Cai L. NF-kappaB affects proliferation and invasiveness of breast cancer cells by regulating CD44 expression. PLoS ONE 2014;9:e106966.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Tang QL, Xie XB, Wang J, Chen Q, Han AJ, Zou CY, et al. Glycogen synthase kinase-3beta, NF-kappaB signaling, and tumorigenesis of human osteosarcoma. J Natl Cancer Inst. 2012;104:749–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Liao D, Zhong L, Duan T, Zhang RH, Wang X, Wang G, et al. Aspirin suppresses the growth and metastasis of osteosarcoma through the NF-kappaB pathway. Clin Cancer Res. 2015;21:5349–59.

    Article  CAS  PubMed  Google Scholar 

  42. Kelly AD, Haibe-Kains B, Janeway KA, Hill KE, Howe E, Goldsmith J, et al. MicroRNA paraffin-based studies in osteosarcoma reveal reproducible independent prognostic profiles at 14q32. Genome Med. 2013;5:2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Barretina J, Caponigro G, Stransky N, Venkatesan K, Margolin AA, Kim S, et al. The cancer cell line encyclopedia enables predictive modelling of anticancer drug sensitivity. Nature. 2012;483:603–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Coughlin SR. How the protease thrombin talks to cells. Proc Natl Acad Sci USA. 1999;96:11023–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Ludeman MJ, Zheng YW, Ishii K, Coughlin SR. Regulated shedding of PAR1 N-terminal exodomain from endothelial cells. J Biol Chem. 2004;279:18592–9.

    Article  CAS  PubMed  Google Scholar 

  46. Rebeaud F, Hailfinger S, Posevitz-Fejfar A, Tapernoux M, Moser R, Rueda D, et al. The proteolytic activity of the paracaspase MALT1 is key in T cell activation. Nat Immunol. 2008;9:272–81.

    Article  CAS  PubMed  Google Scholar 

  47. Fontan L, Yang C, Kabaleeswaran V, Volpon L, Osborne MJ, Beltran E, et al. MALT1 small molecule inhibitors specifically suppress ABC-DLBCL in vitro and in vivo. Cancer Cell. 2012;22:812–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Dai B, Grau M, Juilland M, Klener P, Horing E, Molinsky J, et al. B-cell receptor-driven MALT1 activity regulates MYC signaling in mantle cell lymphoma. Blood. 2017;129:333–46.

    Article  CAS  PubMed  Google Scholar 

  49. Zhang S, Pan D, Jia XM, Lin X, Zhao X. The CARMA3-BCL10-MALT1 (CBM) complex contributes to DNA damage-induced NF-kappaB activation and cell survival. Protein Cell. 2017;8:856–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Steeg PS. Targeting metastasis. Nat Rev Cancer. 2016;16:201–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Pagani O, Senkus E, Wood W, Colleoni M, Cufer T, Kyriakides S, et al. International guidelines for management of metastatic breast cancer: can metastatic breast cancer be cured? J Natl Cancer Inst. 2010;102:456–63.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Bacci G, Briccoli A, Longhi A, Ferrari S, Mercuri M, Faggioli F, et al. Treatment and outcome of recurrent osteosarcoma: experience at Rizzoli in 235 patients initially treated with neoadjuvant chemotherapy. Acta Oncol. 2005;44:748–55.

    Article  CAS  PubMed  Google Scholar 

  53. Massague J, Obenauf AC. Metastatic colonization by circulating tumour cells. Nature. 2016;529:298–306.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Hoesel B, Schmid JA. The complexity of NF-kappaB signaling in inflammation and cancer. Mol Cancer. 2013;12:86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Xia Y, Shen S, Verma IM. NF-kappaB, an active player in human cancers. Cancer Immunol Res. 2014;2:823–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Taniguchi K, Karin M. NF-kappaB, inflammation, immunity and cancer: coming of age. Nat Rev Immunol. 2018;18:309–24.

    Article  CAS  PubMed  Google Scholar 

  57. Wu Y, Deng J, Rychahou PG, Qiu S, Evers BM, Zhou BP. Stabilization of snail by NF-kappaB is required for inflammation-induced cell migration and invasion. Cancer Cell. 2009;15:416–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Huber MA, Azoitei N, Baumann B, Grunert S, Sommer A, Pehamberger H, et al. NF-kappaB is essential for epithelial-mesenchymal transition and metastasis in a model of breast cancer progression. J Clin Investig. 2004;114:569–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Pires BR, Mencalha AL, Ferreira GM, de Souza WF, Morgado-Diaz JA, Maia AM, et al. NF-kappaB is involved in the regulation of EMT genes in breast cancer cells. PLoS ONE. 2017;12:e0169622.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Liu T, Zhang L, Joo D, Sun SC. NF-kappaB signaling in inflammation. Signal Transduct Target Ther. 2017;2:e17023.

  61. Baud V, Karin M. Is NF-kappaB a good target for cancer therapy? Hopes and pitfalls. Nat Rev Drug Discov. 2009;8:33–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Bardet M, Unterreiner A, Malinverni C, Lafossas F, Vedrine C, Boesch D, et al. The T-cell fingerprint of MALT1 paracaspase revealed by selective inhibition. Immunol Cell Biol. 2018;96:81–99.

    Article  CAS  PubMed  Google Scholar 

  63. Fontan L, Qiao Q, Hatcher JM, Casalena G, Us I, Teater M, et al. Specific covalent inhibition of MALT1 paracaspase suppresses B cell lymphoma growth. J Clin Investig. 2018;128:4397–412.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Lim SM, Jeong Y, Lee S, Im H, Tae HS, Kim BG, et al. Identification of beta-lapachone analogs as novel MALT1 inhibitors to treat an aggressive subtype of diffuse large B-cell lymphoma. J Med Chem. 2015;58:8491–502.

    Article  CAS  PubMed  Google Scholar 

  65. Nagel D, Spranger S, Vincendeau M, Grau M, Raffegerst S, Kloo B, et al. Pharmacologic inhibition of MALT1 protease by phenothiazines as a therapeutic approach for the treatment of aggressive ABC-DLBCL. Cancer Cell. 2012;22:825–37.

    Article  CAS  PubMed  Google Scholar 

  66. Meloni L, Verstrepen L, Kreike M, Staal J, Driege Y, Afonina IS, et al. Mepazine inhibits RANK-induced osteoclastogenesis independent of its MALT1 inhibitory function. Molecules. 2018;23:1–13.

    Article  PubMed Central  CAS  Google Scholar 

  67. Ekambaram P, Lee JL, Hubel NE, Hu D, Yerneni S, Campbell PG, et al. The CARMA3-Bcl10-MALT1 signalosome drives NFkappaB activation and promotes aggressiveness in angiotensin II receptor-positive breast cancer. Cancer Res. 2018;78:1225–40.

    Article  CAS  PubMed  Google Scholar 

  68. Sun X, Cheng G, Hao M, Zheng J, Zhou X, Zhang J, et al. CXCL12/CXCR4/CXCR7 chemokine axis and cancer progression. Cancer Metastasis Rev. 2010;29:709–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Justus CR, Leffler N, Ruiz-Echevarria M, Yang LV. In vitro cell migration and invasion assays. J Vis Exp. 2014:e51046.

  70. Bagati A, Koch Z, Bofinger D, Goli H, Weiss LS, Dau R, et al. A modified in vitro invasion assay to determine the potential role of hormones, cytokines and/or growth factors in mediating cancer cell invasion. J Vis Exp. 2015:e51480.

  71. Szasz AM, Lanczky A, Nagy A, Forster S, Hark K, Green JE, et al. Cross-validation of survival associated biomarkers in gastric cancer using transcriptomic data of 1065 patients. Oncotarget. 2016;7:49322–33.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors wish to thank Celia Paris for her support and Katrina O’Halloran, Emily Elliott, Yijen Wu, Amir Borhani, and Nathan Salamacha for their technical assistance. In addition, we thank Dr Ed Prochownik for use of his laboratory equipment. This work was supported by NIH Grant 5F30CA196095 to JRM and a Hyundai Scholar’s Hope Grant #91499PA to LMM-L. JRM also received support from The University of Pittsburgh Medical Scientist Training Program (MSTP) T32GM008208. KMB received support from an NIH career development award, K12HD052892, an Alex’s Lemonade Stand Foundation Young Investigator Award, and the John G. Rangos Senior Research Scholar Fund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Linda M. McAllister-Lucas.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

McAuley, J.R., Bailey, K.M., Ekambaram, P. et al. MALT1 is a critical mediator of PAR1-driven NF-κB activation and metastasis in multiple tumor types. Oncogene 38, 7384–7398 (2019). https://doi.org/10.1038/s41388-019-0958-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-019-0958-4

This article is cited by

Search

Quick links