Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

MUC13 promotes the development of colitis-associated colorectal tumors via β-catenin activity

Abstract

Many adenocarcinomas, including colorectal cancer (CRC), overexpress the MUC13 cell surface mucin, but the functional significance and mechanisms are unknown. Here, we report the roles of MUC13 in colonic tumorigenesis and tumor progression. High-MUC13 expression is associated with poor survival in two independent patient cohorts. In a comprehensive series of in vivo experiments, we identified a critical role for MUC13 in the development of this malignancy, by promoting survival and proliferation of tumor-initiating cells and driving an immunosuppressive environment that protects tumors from checkpoint inhibitor immunotherapy. In Muc13-deficient mice, fewer tumors are generated after exposure to carcinogens and inflammation, they have markedly reduced β-catenin signaling, have more tumor-infiltrating CD103+ dendritic cells and CD8+ T lymphocytes, fewer myeloid-derived suppressor cells, and are rendered sensitive to checkpoint inhibitor immunotherapy (anti-PD-L1). Mechanistically, we show that MUC13 protects β-catenin from degradation, by interacting with GSK-3β, which increases β-catenin nuclear translocation and promotes its signaling, thereby driving cancer initiation, progression, invasion, and immune suppression. Therefore, MUC13 is a potential marker of poor prognosis in colorectal cancer, and inhibiting MUC13 may be useful in the treatment of colitis-associated cancer and sensitizing tumors to immunotherapy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Zauber AG, Winawer SJ, O’Brien MJ, Lansdorp-Vogelaar I, van Ballegooijen M, Hankey BF, et al. Colonoscopic polypectomy and long-term prevention of colorectal-cancer deaths. New Engl J Med. 2012;366:687–96.

    CAS  PubMed  Google Scholar 

  2. Siegel R, Naishadham D, Jemal A. Cancer statistics, 2012. CA Cancer J Clin. 2012;62:10–29.

    PubMed  Google Scholar 

  3. Day FL, Jorissen RN, Lipton L, Mouradov D, Sakthianandeswaren A, Christie M, et al. PIK3CA and PTEN gene and exon mutation-specific clinicopathologic and molecular associations in colorectal cancer. Clin Cancer Res. 2013;19:3285–96.

    CAS  PubMed  Google Scholar 

  4. Clevers H. Wnt/beta-catenin signaling in development and disease. Cell. 2006;127:469–80.

    CAS  PubMed  Google Scholar 

  5. Najdi R, Holcombe RF, Waterman ML. Wnt signaling and colon carcinogenesis: beyond APC. J Carcinog. 2011;10:5.

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Spranger S, Bao R, Gajewski TF. Melanoma-intrinsic beta-catenin signalling prevents anti-tumour immunity. Nature. 2015;523:231–5.

    CAS  PubMed  Google Scholar 

  7. Hong Y, Manoharan I, Suryawanshi A, Majumdar T, Angus-Hill ML, Koni PA, et al. beta-catenin promotes regulatory T-cell responses in tumors by inducing vitamin A metabolism in dendritic cells. Cancer Res. 2015;75:656–65.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Augustin I, Dewi DL, Hundshammer J, Rempel E, Brunk F, Boutros M. Immune cell recruitment in teratomas is impaired by increased Wnt secretion. Stem cell Res. 2016;17:607–15.

    CAS  PubMed  Google Scholar 

  9. MacDonald BT, Tamai K, He X. Wnt/beta-catenin signaling: components, mechanisms, and diseases. Dev Cell. 2009;17:9–26.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Kinzler KW, Vogelstein B. Lessons from hereditary colorectal cancer. Cell. 1996;87:159–70.

    CAS  PubMed  Google Scholar 

  11. Vermeulen L, De Sousa EMF, van der Heijden M, Cameron K, de Jong JH, Borovski T, et al. Wnt activity defines colon cancer stem cells and is regulated by the microenvironment. Nat Cell Biol. 2010;12:468–76.

    CAS  PubMed  Google Scholar 

  12. Brabletz S, Schmalhofer O, Brabletz T. Gastrointestinal stem cells in development and cancer. J Pathol. 2009;217:307–17.

    CAS  PubMed  Google Scholar 

  13. McAuley JL, Linden SK, Png CW, King RM, Pennington HL, Gendler SJ, et al. MUC1 cell surface mucin is a critical element of the mucosal barrier to infection. J Clin Investig. 2007;117:2313–24.

    CAS  PubMed  Google Scholar 

  14. Sheng YH, Hasnain SZ, Florin TH, McGuckin MA. Mucins in inflammatory bowel diseases and colorectal cancer. J Gastroenterol Hepatol. 2012;27:28–38.

    CAS  PubMed  Google Scholar 

  15. Jonckheere N, Skrypek N, Van Seuningen I. Mucins and tumor resistance to chemotherapeutic drugs. Biochim Biophys Acta. 2014;1846:142–51.

    CAS  PubMed  Google Scholar 

  16. Nath S, Mukherjee P. MUC1: a multifaceted oncoprotein with a key role in cancer progression. Trends Mol Med. 2014;20:332–42.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Shimamura T, Ito H, Shibahara J, Watanabe A, Hippo Y, Taniguchi H, et al. Overexpression of MUC13 is associated with intestinal-type gastric cancer. Cancer Sci. 2005;96:265–73.

    CAS  PubMed  Google Scholar 

  18. Walsh MD, Young JP, Leggett BA, Williams SH, Jass JR, McGuckin MA. The MUC13 cell surface mucin is highly expressed by human colorectal carcinomas. Hum Pathol. 2007;38:883–92.

    CAS  PubMed  Google Scholar 

  19. Gupta BK, Maher DM, Ebeling MC, Stephenson PD, Puumala SE, Koch MR, et al. Functions and regulation of MUC13 mucin in colon cancer cells. J Gastroenterol. 2014;49:1378–91.

    CAS  PubMed  Google Scholar 

  20. Gupta BK, Maher DM, Ebeling MC, Sundram V, Koch MD, Lynch DW, et al. Increased expression and aberrant localization of mucin 13 in metastatic colon cancer. J Histochem Cytochem. 2012;60:822–31.

    PubMed  PubMed Central  Google Scholar 

  21. Khan S, Ebeling MC, Zaman MS, Sikander M, Yallapu MM, Chauhan N, et al. MicroRNA-145 targets MUC13 and suppresses growth and invasion of pancreatic cancer. Oncotarget. 2014;5:7599–609.

    PubMed  PubMed Central  Google Scholar 

  22. Chauhan SC, Ebeling MC, Maher DM, Koch MD, Watanabe A, Aburatani H, et al. MUC13 mucin augments pancreatic tumorigenesis. Mol Cancer Ther. 2012;11:24–33.

    CAS  PubMed  Google Scholar 

  23. Sheng Y, Ng CP, Lourie R, Shah ET, He Y, Wong KY, et al. MUC13 overexpression in renal cell carcinoma plays a central role in tumor progression and drug resistance. Int J Cancer. 2017;140:2351–63.

    CAS  PubMed  Google Scholar 

  24. Chauhan SC, Vannatta K, Ebeling MC, Vinayek N, Watanabe A, Pandey KK, et al. Expression and functions of transmembrane mucin MUC13 in ovarian cancer. Cancer Res. 2009;69:765–74.

    CAS  PubMed  Google Scholar 

  25. Williams SJ, Wreschner DH, Tran M, Eyre HJ, Sutherland GR, McGuckin MA. Muc13, a novel human cell surface mucin expressed by epithelial and hemopoietic cells. J Biol Chem. 2001;276:18327–36.

    CAS  PubMed  Google Scholar 

  26. Linden SK, Sutton P, Karlsson NG, Korolik V, McGuckin MA. Mucins in the mucosal barrier to infection. Mucosal Immunol. 2008;1:183–97.

    CAS  PubMed  Google Scholar 

  27. Sheng YH, Lourie R, Linden SK, Jeffery PL, Roche D, Tran TV, et al. The MUC13 cell-surface mucin protects against intestinal inflammation by inhibiting epithelial cell apoptosis. Gut. 2011;60:1661–70.

    CAS  PubMed  Google Scholar 

  28. Sheng YH, Triyana S, Wang R, Das I, Gerloff K, Florin TH, et al. MUC1 and MUC13 differentially regulate epithelial inflammation in response to inflammatory and infectious stimuli. Mucosal Immunol. 2013;6:557–68.

    CAS  PubMed  Google Scholar 

  29. Sheng YH, He Y, Hasnain SZ, Wang R, Tong H, Clarke DT, et al. MUC13 protects colorectal cancer cells from death by activating the NF-kappaB pathway and is a potential therapeutic target. Oncogene. 2017;36:700–13.

    CAS  PubMed  Google Scholar 

  30. De Robertis M, Massi E, Poeta ML, Carotti S, Morini S, Cecchetelli L, et al. The AOM/DSS murine model for the study of colon carcinogenesis: from pathways to diagnosis and therapy studies. J Carcinog. 2011;10:9.

    PubMed  PubMed Central  Google Scholar 

  31. Bollrath J, Phesse TJ, von Burstin VA, Putoczki T, Bennecke M, Bateman T, et al. gp130-mediated Stat3 activation in enterocytes regulates cell survival and cell-cycle progression during colitis-associated tumorigenesis. Cancer Cell. 2009;15:91–102.

    CAS  PubMed  Google Scholar 

  32. Greten FR, Eckmann L, Greten TF, Park JM, Li ZW, Egan LJ, et al. IKKbeta links inflammation and tumorigenesis in a mouse model of colitis-associated cancer. Cell. 2004;118:285–96.

    CAS  PubMed  Google Scholar 

  33. Vivanco I, Sawyers CL. The phosphatidylinositol 3-Kinase AKT pathway in human cancer. Nat Rev Cancer. 2002;2:489–501.

    CAS  PubMed  Google Scholar 

  34. Witty JP, McDonnell S, Newell KJ, Cannon P, Navre M, Tressler RJ, et al. Modulation of matrilysin levels in colon carcinoma cell lines affects tumorigenicity in vivo. Cancer Res. 1994;54:4805–12.

    CAS  PubMed  Google Scholar 

  35. Said AH, Raufman JP, Xie G. The role of matrix metalloproteinases in colorectal cancer. Cancers. 2014;6:366–75.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Schmierer B, Hill CS. TGFbeta-SMAD signal transduction: molecular specificity and functional flexibility. Nat Rev Mol cell Biol. 2007;8:970–82.

    CAS  PubMed  Google Scholar 

  37. Schneikert J, Behrens J. The canonical Wnt signalling pathway and its APC partner in colon cancer development. Gut. 2007;56:417–25.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Fuertes MB, Kacha AK, Kline J, Woo SR, Kranz DM, Murphy KM, et al. Host type I IFN signals are required for antitumor CD8+ T cell responses through CD8{alpha}+ dendritic cells. J Exp Med. 2011;208:2005–16.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Hildner K, Edelson BT, Purtha WE, Diamond M, Matsushita H, Kohyama M, et al. Batf3 deficiency reveals a critical role for CD8alpha+ dendritic cells in cytotoxic T cell immunity. Science. 2008;322:1097–1100.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Bedoui S, Whitney PG, Waithman J, Eidsmo L, Wakim L, Caminschi I, et al. Cross-presentation of viral and self antigens by skin-derived CD103+ dendritic cells. Nat Immunol. 2009;10:488–95.

    CAS  PubMed  Google Scholar 

  41. Youn JI, Nagaraj S, Collazo M, Gabrilovich DI. Subsets of myeloid-derived suppressor cells in tumor-bearing mice. J Immunol. 2008;181:5791–802.

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Katoh H, Wang D, Daikoku T, Sun H, Dey SK, Dubois RN. CXCR2-expressing myeloid-derived suppressor cells are essential to promote colitis-associated tumorigenesis. Cancer Cell. 2013;24:631–44.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Spranger S, Dai D, Horton B, Gajewski TF. Tumor-residing Batf3 dendritic cells are required for effector T cell trafficking and adoptive T cell therapy. Cancer Cell. 2017;31:711–23 e714.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Salmon H, Idoyaga J, Rahman A, Leboeuf M, Remark R, Jordan S, et al. Expansion and activation of CD103(+) dendritic cell progenitors at the tumor site enhances tumor responses to therapeutic PD-L1 and BRAF inhibition. Immunity. 2016;44:924–38.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Tenbaum SP, Ordonez-Moran P, Puig I, Chicote I, Arques O, Landolfi S, et al. beta-catenin confers resistance to PI3K and AKT inhibitors and subverts FOXO3a to promote metastasis in colon cancer. Nat Med. 2012;18:892–901.

    CAS  PubMed  Google Scholar 

  46. Gavert N, Ben-Ze’ev A. beta-Catenin signaling in biological control and cancer. J Cell Biochem. 2007;102:820–8.

    CAS  PubMed  Google Scholar 

  47. Khan S, Sikander M, Ebeling MC, Ganju A, Kumari S, Yallapu MM, et al. MUC13 interaction with receptor tyrosine kinase HER2 drives pancreatic ductal adenocarcinoma progression. Oncogene. 2017;36:491–500.

    CAS  PubMed  Google Scholar 

  48. Pai P, Rachagani S, Dhawan P, Batra SK. Mucins and Wnt/beta-catenin signaling in gastrointestinal cancers: an unholy nexus. Carcinogenesis. 2016;37:223–32.

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Zhi X, Tao J, Xie K, Zhu Y, Li Z, Tang J, et al. MUC4-induced nuclear translocation of beta-catenin: a novel mechanism for growth, metastasis and angiogenesis in pancreatic cancer. Cancer Lett. 2014;346:104–13.

    CAS  PubMed  Google Scholar 

  50. Vilar E, Gruber SB. Microsatellite instability in colorectal cancer-the stable evidence. Nat Rev Clin Oncol. 2010;7:153–62.

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Gabrilovich DI, Nagaraj S. Myeloid-derived suppressor cells as regulators of the immune system. Nat Rev Immunol. 2009;9:162–74.

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Goldman M, Craft B, Swatloski T, Cline M, Morozova O, Diekhans M, et al. The UCSC Cancer Genomics Browser: update 2015. Nucleic Acids Res. 2015;43:D812–7.

    CAS  PubMed  Google Scholar 

  53. Cancer Genome Atlas, N. Comprehensive molecular characterization of human colon and rectal cancer. Nature. 2012;487:330–7.

    Google Scholar 

  54. Jensen MA, Ferretti V, Grossman RL, Staudt LM. The NCI Genomic Data Commons as an engine for precision medicine. Blood. 2017;130:453–9.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank A/Prof. Allison Pettit for providing the IHC reagents. We also thank Dr Saba Farnaghi and Ms Rhea Menon for help with mice experiments. We also recognize the technical assistance of the TRI core facilities for histology, flow cytometry, and microscopy.

Author contributions

YS designed and performed experiments and wrote the paper. KW provided intellectual input to the experimental design and performed experiments. IS and AW provided intellectual input to the paper and performed survival analysis. RW and YH provided intellectual input to the paper and performed experiments. MP performed experiments. RL scored the MUC13 IHC staining. VS, RG, CN, and AP performed experiments. JH, GK, TF, and JB provided intellectual input to the experimental design and paper. KJR provided intellectual input to the project, and detailed comments and suggestions on drafts of the paper. SH and MM supervised the project and provided intellectual input to the paper.

Funding

Supported by NHMRC project grant 1060698 and funding by the Mater Foundation, MAM was supported by an NHMRC Principal Research Fellowship. RL was partly supported by a Betty McGrath/Mater Practitioner Research Fellowship. IS is supported by a QUT Vice-Chancellor’s Senior Research Fellowship. The Translational Research Institute (TRI) is supported by a grant from the Australian Government.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sumaira Hasnain or Michael A. McGuckin.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

Ethical approval is obtained from University of Queensland Animal Ethics Committee.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sheng, Y.h., Wong, K.Y., Seim, I. et al. MUC13 promotes the development of colitis-associated colorectal tumors via β-catenin activity. Oncogene 38, 7294–7310 (2019). https://doi.org/10.1038/s41388-019-0951-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-019-0951-y

This article is cited by

Search

Quick links