Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Circular RNAs add diversity to androgen receptor isoform repertoire in castration-resistant prostate cancer

Abstract

Deregulated expression of circular RNAs (circRNAs) is associated with various human diseases, including many types of cancer. Despite their growing links to cancer, there has been limited characterization of circRNAs in metastatic castration-resistant prostate cancer, the major cause of prostate cancer mortality. Here, through the analysis of an exome-capture RNA-seq dataset from 47 metastatic castration-resistant prostate cancer samples and ribodepletion and RNase R RNA-sequencing of patient-derived xenografts (PDXs) and cell models, we identified 13 circRNAs generated from the key prostate cancer driver gene-androgen receptor (AR). We validated and characterized the top four most abundant, clinically relevant AR circRNAs. Expression of these AR circRNAs was upregulated during castration-resistant progression of PDXs. The upregulation was not due to global increase of circRNA formation in these tumors. Instead, the levels of AR circRNAs correlated strongly with that of the linear AR transcripts (both AR and AR variants) in clinical samples and PDXs, indicating a transcriptional mechanism of regulation. In cultured cells, androgen suppressed the expression of these AR circRNAs and the linear AR transcripts, and the suppression was attenuated by an antiandrogen. Using nuclear/cytoplasmic fractionation and RNA in-situ hybridization assays, we demonstrated predominant cytoplasmic localization of these AR circRNAs, indicating likely cytoplasmic functions. Overall, this is the first comprehensive characterization of circRNAs arising from the AR gene. With greater resistance to exoribonuclease compared to the linear AR transcripts and detectability of AR circRNAs in patient plasma, these AR circRNAs may serve as surrogate circulating markers for AR/AR-variant expression and castration-resistant prostate cancer progression.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Memczak S, Jens M, Elefsinioti A, Torti F, Krueger J, Rybak A, et al. Circular RNAs are a large class of animal RNAs with regulatory potency. Nature. 2013;495:333–8.

    CAS  PubMed  Google Scholar 

  2. Li Z, Huang C, Bao C, Chen L, Lin M, Wang X, et al. Exon-intron circular RNAs regulate transcription in the nucleus. Nat Struct Mol Biol. 2015;22:256–64.

    PubMed  Google Scholar 

  3. Zhang Y, Zhang XO, Chen T, Xiang JF, Yin QF, Xing YH, et al. Circular intronic long noncoding RNAs. Mol Cell. 2013;51:792–806.

    CAS  PubMed  Google Scholar 

  4. Burd CE, Jeck WR, Liu Y, Sanoff HK, Wang Z, Sharpless NE. Expression of linear and novel circular forms of an INK4/ARF-associated non-coding RNA correlates with atherosclerosis risk. PLoS Genet. 2010;6:e1001233.

    PubMed  PubMed Central  Google Scholar 

  5. Kotake Y, Nakagawa T, Kitagawa K, Suzuki S, Liu N, Kitagawa M, et al. Long non-coding RNA ANRIL is required for the PRC2 recruitment to and silencing ofp15(INK4B) tumor suppressor gene. Oncogene. 2011;30:1956–62.

    CAS  PubMed  Google Scholar 

  6. Hansen TB, Jensen TI, Clausen BH, Bramsen JB, Finsen B, Damgaard CK, et al. Natural RNA circles function as efficient microRNA sponges. Nature. 2013;495:384–8.

    CAS  PubMed  Google Scholar 

  7. Ashwal-Fluss R, Meyer M, Pamudurti NR, Ivanov A, Bartok O, Hanan M, et al. circRNA biogenesis competes with pre-mRNA splicing. Mol Cell. 2014;56:55–66.

    CAS  PubMed  Google Scholar 

  8. Abdelmohsen K, Panda AC, Munk R, Grammatikakis I, Dudekula DB, De S, et al. Identification of HuR target circular RNAs uncovers suppression of PABPN1 translation by CircPABPN1. RNA Biol. 2017;14:361–9.

    PubMed  PubMed Central  Google Scholar 

  9. Holdt LM, Stahringer A, Sass K, Pichler G, Kulak NA, Wilfert W, et al. Circular non-coding RNA ANRIL modulates ribosomal RNA maturation and atherosclerosis in humans. Nat Commun. 2016;7:12429.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Xu H, Guo S, Li W, Yu P. The circular RNA Cdr1as, via miR-7 and its targets, regulates insulin transcription and secretion in islet cells. Sci Rep. 2015;5:12453.

    PubMed  PubMed Central  Google Scholar 

  11. Chen S, Huang V, Xu X, Livingstone J, Soares F, Jeon J, et al. Widespread and functional RNA circularization in localized prostate. Cancer Cell. 2019;176:e822.

    Google Scholar 

  12. Legnini I, Di Timoteo G, Rossi F, Morlando M, Briganti F, Sthandier O, et al. Circ-ZNF609 is a circular RNA that can be translated and functions in myogenesis. Mol Cell. 2017;66:22–37 e29.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Pamudurti NR, Bartok O, Jens M, Ashwal-Fluss R, Stottmeister C, Ruhe L, et al. Translation of CircRNAs. Mol Cell. 2017;66:9–21 e27.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Yang Y, Fan X, Mao M, Song X, Wu P, Zhang Y, et al. Extensive translation of circular RNAs driven by N(6)-methyladenosine. Cell Res. 2017;27:626–41.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Kristensen LS, Hansen TB, Veno MT, Kjems J. Circular RNAs in cancer: opportunities and challenges in the field. Oncogene. 2018;37:555–65.

    CAS  PubMed  Google Scholar 

  16. Li Y, Zheng Q, Bao C, Li S, Guo W, Zhao J, et al. Circular RNA is enriched and stable in exosomes: a promising biomarker for cancer diagnosis. Cell Res. 2015;25:981–4.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Vo JN, Cieslik M, Zhang Y, Shukla S, Xiao L, Zhang Y, et al. The landscape of circular RNA in cancer. Cell. 2019;176:869–81 e813.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Dai Y, Li D, Chen X, Tan X, Gu J, Chen M, et al. Circular RNA myosin light chain kinase (MYLK) promotes prostate cancer progression through modulating Mir-29a expression. Med Sci Monit. 2018;24:3462–71.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Si-Tu J, Cai Y, Feng T, Yang D, Yuan S, Yang X, et al. Upregulated circular RNA circ-102004 that promotes cell proliferation in prostate cancer. Int J Biol Macromol. 2019;122:1235–43.

    PubMed  Google Scholar 

  20. Kong Z, Wan X, Zhang Y, Zhang P, Zhang Y, Zhang X, et al. Androgen-responsive circular RNA circSMARCA5 is up-regulated and promotes cell proliferation in prostate cancer. Biochem Biophys Res Commun. 2017;493:1217–23.

    CAS  PubMed  Google Scholar 

  21. Xia Q, Ding T, Zhang G, Li Z, Zeng L, Zhu Y, et al. Circular RNA expression profiling identifies prostate cancer-specific circRNAs in prostate cancer. Cell Physiol Biochem. 2018;50:1903–15.

    CAS  PubMed  Google Scholar 

  22. Egan A, Dong Y, Zhang H, Qi Y, Balk SP, Sartor O. Castration-resistant prostate cancer: adaptive responses in the androgen axis. Cancer Treat Rev. 2014;40:426–33.

    CAS  PubMed  Google Scholar 

  23. Huang H, Tindall DJ. The role of the androgen receptor in prostate cancer. Crit Rev Eukaryot Gene Expr. 2002;12:193–207.

    CAS  PubMed  Google Scholar 

  24. Shand RL, Gelmann EP. Molecular biology of prostate-cancer pathogenesis. Curr Opin Urol. 2006;16:123–31.

    PubMed  Google Scholar 

  25. Kahn B, Collazo J, Kyprianou N. Androgen receptor as a driver of therapeutic resistance in advanced prostate cancer. Int J Biol Sci. 2014;10:588–95.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Yuan X, Cai C, Chen S, Chen S, Yu Z, Balk SP. Androgen receptor functions in castration-resistant prostate cancer and mechanisms of resistance to new agents targeting the androgen axis. Oncogene. 2014;33:2815–25.

    CAS  PubMed  Google Scholar 

  27. Cao S, Zhan Y, Dong Y. Emerging data on androgen receptor splice variants in prostate cancer. Endocr Relat Cancer. 2016;23:T199–T210.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Robinson D, Van Allen EM, Wu YM, Schultz N, Lonigro RJ, Mosquera JM, et al. Integrative clinical genomics of advanced prostate cancer. Cell. 2015;161:1215–28.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Li Y, Hwang TH, Oseth LA, Hauge A, Vessella RL, Schmechel SC, et al. AR intragenic deletions linked to androgen receptor splice variant expression and activity in models of prostate cancer progression. Oncogene. 2012;31:4759–67.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Cai C, He HH, Chen S, Coleman I, Wang H, Fang Z, et al. Androgen receptor gene expression in prostate cancer is directly suppressed by the androgen receptor through recruitment of lysine-specific demethylase 1. Cancer Cell. 2011;20:457–71.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Burnstein KL. Regulation of androgen receptor levels: implications for prostate cancer progression and therapy. J Cell Biochem. 2005;95:657–69.

    CAS  PubMed  Google Scholar 

  32. Bach DH, Lee SK, Sood AK. Circular RNAs in cancer. Mol Ther Nucleic Acids. 2019;16:118–29.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Li S, Han L. Circular RNAs as promising biomarkers in cancer: detection, function, and beyond. Genome Med. 2019;11:15.

    PubMed  PubMed Central  Google Scholar 

  34. Markowski MC, Silberstein JL, Eshleman JR, Eisenberger MA, Luo J, Antonarakis ES. Clinical utility of CLIA-Grade AR-V7 testing in patients with metastatic castration-resistant prostate cancer. JCO Precis Oncol. 2017;2017.

  35. Liang D, Wilusz JE. Short intronic repeat sequences facilitate circular RNA production. Genes Dev. 2014;28:2233–47.

    PubMed  PubMed Central  Google Scholar 

  36. Nyquist MD, Li Y, Hwang TH, Manlove LS, Vessella RL, Silverstein KA, et al. TALEN-engineered AR gene rearrangements reveal endocrine uncoupling of androgen receptor in prostate cancer. Proc Natl Acad Sci USA. 2013;110:17492–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Zheng Q, Bao C, Guo W, Li S, Chen J, Chen B, et al. Circular RNA profiling reveals an abundant circHIPK3 that regulates cell growth by sponging multiple miRNAs. Nat Commun. 2016;7:11215.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Hamilton MP, Rajapakshe KI, Bader DA, Cerne JZ, Smith EA, Coarfa C, et al. The landscape of microRNA targeting in prostate cancer defined by AGO-PAR-CLIP. Neoplasia. 2016;18:356–70.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Abe N, Hiroshima M, Maruyama H, Nakashima Y, Nakano Y, Matsuda A, et al. Rolling circle amplification in a prokaryotic translation system using small circular RNA. Angew Chem Int Ed Engl. 2013;52:7004–8.

    CAS  PubMed  Google Scholar 

  40. Abe N, Matsumoto K, Nishihara M, Nakano Y, Shibata A, Maruyama H, et al. Rolling circle translation of circular RNA in living human cells. Sci Rep. 2015;5:16435.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics. 2013;29:15–21.

    CAS  PubMed  Google Scholar 

  42. Ungerleider NA, Flemington EK. SpliceV: analysis and publication quality printing of linear and circular RNA splicing, expression and regulation. BMC Bioinf. 2019;20:231.

    Google Scholar 

  43. Ungerleider N, Concha M, Lin Z, Roberts C, Wang X, Cao S, et al. The Epstein Barr virus circRNAome. PLoS Pathog. 2018;14:e1007206.

    PubMed  PubMed Central  Google Scholar 

  44. Ungerleider N, Jain V, Wang Y, Maness NJ, Blair RV, Alvarez X, et al. Comparative analysis of gammaherpesvirus circRNA repertoires: conserved and unique viral circRNAs. J Virol. 2019;93:e01952–01918.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Dong Y, Lee SO, Zhang H, Marshall J, Gao AC, Ip C. Prostate specific antigen expression is down-regulated by selenium through disruption of androgen receptor signaling. Cancer Res. 2004;64:19–22.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful to Dr. Alan Meeker at Johns Hopkins University for providing LNCaP95 cells. We appreciate the support from the Tulane Cancer Next Generation Sequence Analysis core for utilization of resources and expertize for this work.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Erik K. Flemington or Yan Dong.

Ethics declarations

Conflict of interest

This work was supported by the following grants: the National Institutes of Health grants R01CA188609, R01AI101046, R01AI106676, P01CA214091, PNW Prostate Cancer SPORE P50CA097186, P01CA163227, RCMI 2U54MD007595, and 5P20GM103424-17; Department of Defense grants W81XWH-15-1-0439, W81XWH-16-1-0317, and W81XWH-16-1-0318; The Prostate Cancer Foundation. The Richard M. Lucas Foundation supported the development of the LuCaP models. The content is solely the responsibility of the authors and does not necessarily represent the official views of the funding agencies.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cao, S., Ma, T., Ungerleider, N. et al. Circular RNAs add diversity to androgen receptor isoform repertoire in castration-resistant prostate cancer. Oncogene 38, 7060–7072 (2019). https://doi.org/10.1038/s41388-019-0947-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-019-0947-7

This article is cited by

Search

Quick links