Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

The Hippo pathway modulates resistance to BET proteins inhibitors in lung cancer cells

Abstract

Inhibitors of BET proteins (BETi) are anti-cancer drugs that have shown efficacy in pre-clinical settings and are currently in clinical trials for different types of cancer, including non-small cell lung cancer (NSCLC). Currently, no predictive biomarker is available to identify patients that may benefit from this treatment. To uncover the mechanisms of resistance to BETi, we performed a genome-scale CRISPR/Cas9 screening in lung cancer cells. We identified three Hippo pathway genes, LATS2, TAOK1, and NF2, as key determinants for sensitivity to BETi. The knockout of these genes induces resistance to BETi, by promoting TAZ nuclear localization and transcriptional activity. Conversely, TAZ expression promotes resistance to these drugs. We also showed that TAZ, YAP, and their partner TEAD are direct targets of BRD4 and that treatment with BETi downregulates their expression. Noticeably, molecular alterations in one or more of these genes are present in a large fraction of NSCLC patients and TAZ amplification or overexpression correlates with a worse outcome in lung adenocarcinoma. Our data define the central role of Hippo pathway in mediating resistance to BETi and provide a rationale for using BETi to counter-act YAP/TAZ-mediated pro-oncogenic activity.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. Zaman A, Bivona TG. Emerging application of genomics-guided therapeutics in personalized lung cancer treatment. Ann Transl Med. 2018;6:160.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Kanno T, Kanno Y, LeRoy G, Campos E, Sun HW, Brooks SR, et al. BRD4 assists elongation of both coding and enhancer RNAs by interacting with acetylated histones. Nat Struct Mol Biol. 2014;21:1047–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Dawson MA, Prinjha RK, Dittmann A, Giotopoulos G, Bantscheff M, Chan WI, et al. Inhibition of BET recruitment to chromatin as an effective treatment for MLL-fusion leukaemia. Nature. 2011;478:529–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Lockwood WW, Zejnullahu K, Bradner JE, Varmus H. Sensitivity of human lung adenocarcinoma cell lines to targeted inhibition of BET epigenetic signaling proteins. Proc Natl Acad Sci USA. 2012;109:19408–13.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Loven J, Hoke HA, Lin CY, Lau A, Orlando DA, Vakoc CR, et al. Selective inhibition of tumor oncogenes by disruption of super-enhancers. Cell. 2013;153:320–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Sancisi V, Manzotti G, Gugnoni M, Rossi T, Gandolfi G, Gobbi G, et al. RUNX2 expression in thyroid and breast cancer requires the cooperation of three non-redundant enhancers under the control of BRD4 and c-JUN. Nucleic Acids Res. 2017;45:11249–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Zhao Y, Liu Q, Acharya P, Stengel KR, Sheng QH, Zhou XF, et al. High-resolution mapping of RNA polymerases identifies mechanisms of sensitivity and resistance to BET inhibitors in t(8;21) AML. Cell Rep. 2016;16:2003–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Donati B, Lorenzini E, Ciarrocchi A. BRD4 and Cancer: going beyond transcriptional regulation. Mol Cancer. 2018;17.

  9. Manzotti G, Ciarrocchi A, Sancisi V. Inhibition of BET Proteins and Histone Deacetylase (HDACs): Crossing Roads in CancerTherapy. Cancers. 2019;11:304.

  10. Gao ZY, Yuan T, Zhou X, Ni P, Sun G, Li P, et al. Targeting BRD4 proteins suppresses the growth of NSCLC through downregulation of eIF4E expression. Cancer Biol Ther. 2018;19:407–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Shimamura T, Chen Z, Soucheray M, Carretero J, Kikuchi E, Tchaicha JH, et al. Efficacy of BET bromodomain inhibition in Kras-mutant non-small cell lung cancer. Clin Cancer Res. 2013;19:6183–92.

    Article  CAS  PubMed  Google Scholar 

  12. Amorim S, Stathis A, Gleeson M, Iyengar S, Magarotto V, Leleu X, et al. Bromodomain inhibitor OTX015 in patients with lymphoma or multiple myeloma: a dose-escalation, open-label, pharmacokinetic, phase 1 study. Lancet Haematol. 2016;3:E196–E204.

    Article  PubMed  Google Scholar 

  13. Berthon C, Raffoux E, Thomas X, Vey N, Gomez-Roca C, Yee K, et al. Bromodomain inhibitor OTX015 in patients with acute leukaemia: a dose-escalation, phase 1 study. Lancet Haematol. 2016;3:E186–E195.

    Article  PubMed  Google Scholar 

  14. Meng ZP, Moroishi T, Guan KL. Mechanisms of Hippo pathway regulation. Gene Dev. 2016;30:1–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Varelas X. The Hippo pathway effectors TAZ and YAP in development, homeostasis and disease. Development. 2014;141:1614–26.

    Article  CAS  PubMed  Google Scholar 

  16. Chan SW, Lim CJ, Loo LS, Chong YF, Huang CX, Hong WJ. TEADs mediate nuclear retention of TAZ to promote oncogenic transformation. J Biol Chem. 2009;284:14347–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Zanconato F, Forcato M, Battilana G, Azzolin L, Quaranta E, Bodega B, et al. Genome-wide association between YAP/TAZ/TEAD and AP-1 at enhancers drives oncogenic growth. Nat Cell Biol. 2015;17:1218–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Zhao B, Ye X, Yu JD, Li L, Li WQ, Li SM, et al. TEAD mediates YAP-dependent gene induction and growth control. Gene Dev. 2008;22:1962–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Bartucci M, Dattilo R, Moriconi C, Pagliuca A, Mottolese M, Federici G, et al. TAZ is required for metastatic activity and chemoresistance of breast cancer stem cells. Oncogene. 2015;34:681–90.

    Article  CAS  PubMed  Google Scholar 

  20. Basu-Roy U, Bayin NS, Rattanakorn K, Han E, Placantonakis DG, Mansukhani A, et al. Sox2 antagonizes the Hippo pathway to maintain stemness in cancer cells. Nat Commun. 2015;6:6411.

    Article  CAS  PubMed  Google Scholar 

  21. Chan SW, Lim CJ, Guo K, Ng CP, Lee I, Hunziker W, et al. A role for TAZ in migration, invasion, and tumorigenesis of breast cancer cells. Cancer Res. 2008;68:2592–8.

    Article  CAS  PubMed  Google Scholar 

  22. Cheng HY, Zhang ZF, Rodriguez-Barrueco R, Borczuk A, Liu HJ, Yu JY, et al. Functional genomics screen identifies YAP1 as a key determinant to enhance treatment sensitivity in lung cancer cells. Oncotarget. 2016;7:28976–88.

    PubMed  Google Scholar 

  23. Lau AN, Curtis SJ, Fillmore CM, Rowbotham SP, Mohseni M, Wagner DE, et al. Tumor-propagating cells and Yap/Taz activity contribute to lung tumor progression and metastasis. Embo J. 2014;33:468–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Lin LP, Sabnis A, Chan E, Olivas V, Cade L, Pazarentzos E, et al. The Hippo effector YAP promotes resistance to RAF and MEK targeted therapies. Nat Genet. 2015;47:250–6.

  25. Sanjana NE, Shalem O, Zhang F. Improved vectors and genome-wide libraries for CRISPR screening. Nat Methods. 2014;11:783–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Li W, Koster J, Xu H, Chen CH, Xiao TF, Liu JS, et al. Quality control, modeling, and visualization of CRISPR screens with MAGeCK-VISPR. Genome Biol. 2015;16:281.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Dai XP, Gan WJ, Li XN, Wang SQ, Zhang W, Huang L, et al. Prostate cancer-associated SPOP mutations confer resistance to BET inhibitors through stabilization of BRD4. Nat Med. 2017;23:1063–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Janouskova H, El Tekle G, Bellini E, Udeshi ND, Rinaldi A, Ulbricht A, et al. Opposing effects of cancer type-specific SPOP mutations on BET protein degradation and sensitivity to BET inhibitors. Mol Cell Proteom. 2017;16:S68–S68.

    Google Scholar 

  29. Zhang PZ, Wang DJ, Zhao Y, Ren SC, Gao K, Ye ZQ, et al. Intrinsic BET inhibitor resistance in SPOP-mutated prostate cancer is mediated by BET protein stabilization and AKT-mTORC1 activation. Nat Med. 2017;23:1055–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Boggiano JC, Vanderzalm PJ, Fehon RG. Tao-1 phosphorylates Hippo/MST kinases to regulate the Hippo-Salvador-Warts tumor suppressor pathway. Dev Cell. 2011;21:888–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Yin F, Yu JZ, Zheng YG, Chen Q, Zhang NL, Pan DJ. Spatial organization of Hippo signaling at the plasma membrane mediated by the tumor suppressor Merlin/NF2. Cell. 2013;154:1342–55.

    Article  CAS  PubMed  Google Scholar 

  32. Stein C, Bardet AF, Roma G, Bergling S, Clay I, Ruchti A, et al. YAP1 exerts its transcriptional control via TEAD-mediated activation of enhancers. Plos Genet. 2015;11:e1005465.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Xu MZ, Chan SW, Liu AM, Wong KF, Fan ST, Chen J, et al. AXL receptor kinase is a mediator of YAP-dependent oncogenic functions in hepatocellular carcinoma. Oncogene. 2011;30:1229–40.

    Article  CAS  PubMed  Google Scholar 

  34. Shi J, Wang YF, Zeng L, Wu YD, Deng J, Zhang Q, et al. Disrupting the interaction of BRD4 with diacetylated twist suppresses tumorigenesis in basal-like breast cancer. Cancer Cell. 2014;25:210–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Wang Y, Dong QZ, Zhang QF, Li ZX, Wang EH, Qiu XS. Overexpression of yes-associated protein contributes to progression and poor prognosis of non-small-cell lung cancer. Cancer Sci. 2010;101:1279–85.

    Article  CAS  PubMed  Google Scholar 

  36. Xie M, Zhang L, He CS, Hou JH, Lin SX, Hu ZH, et al. Prognostic significance of TAZ expression in resected non-small cell lung cancer. J Thorac Oncol. 2012;7:799–807.

    Article  CAS  PubMed  Google Scholar 

  37. Shalem O, Sanjana NE, Hartenian E, Shi X, Scott DA, Mikkelsen TS, et al. Genome-scale CRISPR-Cas9 knockout screening in human cells. Science. 2014;343:84–87.

    Article  CAS  PubMed  Google Scholar 

  38. Shalem O, Sanjana NE, Zhang F. High-throughput functional genomics using CRISPR-Cas9. Nat Rev Genet. 2015;16:299–311.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Mohseni M, Sun JL, Lau A, Curtis S, Goldsmith J, Fox VL, et al. A genetic screen identifies an LKB1-MARK signalling axis controlling the Hippo-YAP pathway. Nat Cell Biol. 2014;16:108–17.

    Article  CAS  PubMed  Google Scholar 

  40. Klingbeil O, Lesche R, Gelato KA, Haendler B, Lejeune P. Inhibition of BET bromodomain-dependent XIAP and FLIP expression sensitizes KRAS-mutated NSCLC to pro-apoptotic agents. Cell Death Dis. 2016;7:e2365.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Zanconato F, Battilana G, Forcato M, Filippi L, Azzolin L, Manfrin A, et al. Transcriptional addiction in cancer cells is mediated by YAP/TAZ through BRD4. Nat Med. 2018;24:1599–610.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Ghiso E, Migliore C, Ciciriello V, Morando E, Petrelli A, Corso S, et al. YAP-dependent AXL overexpression mediates resistance to EGFR inhibitors in NSCLC. Neoplasia. 2017;19:1012–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Gujral TS, Kirschner MW. Hippo pathway mediates resistance to cytotoxic drugs. Proc Natl Acad Sci USA. 2017;114:E3729–E3738.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Dull T, Zufferey R, Kelly M, Mandel RJ, Nguyen M, Trono D, et al. A third-generation lentivirus vector with a conditional packaging system. J Virol. 1998;72:8463–71.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Gugnoni M, Sancisi V, Gandolfi G, Manzotti G, Ragazzi M, Giordano D, et al. Cadherin-6 promotes EMT and cancer metastasis by restraining autophagy. Oncogene. 2017;36:667–77.

    Article  CAS  PubMed  Google Scholar 

  46. Dupont S, Morsut L, Aragona M, Enzo E, Giulitti S, Cordenonsi M, et al. Role of YAP/TAZ in mechanotransduction. Nature. 2011;474:179–U212.

    Article  CAS  PubMed  Google Scholar 

  47. Sancisi V, Borettini G, Maramotti S, Ragazzi M, Tamagnini I, Nicoli D, et al. Runx2 isoform I controls a panel of proinvasive genes driving aggressiveness of papillary thyroid carcinomas. J Clin Endocr Metab. 2012;97:E2006–E2015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Sancisi V, Gandolfi G, Ambrosetti DC, Ciarrocchi A. Histone deacetylase inhibitors repress tumoral expression of the proinvasive factor RUNX2. Cancer Res. 2015;75:1868–82.

    Article  CAS  PubMed  Google Scholar 

  49. Kawano S, Maruyama J, Nagashima S, Inami K, Qiu W, Iwasa H, et al. A cell-based screening for TAZ activators identifies ethacridine, a widely used antiseptic and abortifacient, as a compound that promotes dephosphorylation of TAZ and inhibits adipogenesis in C3H10T1/2 cells. J Biochem. 2015;158:413–23.

    Article  CAS  PubMed  Google Scholar 

  50. Cerami E, Gao JJ, Dogrusoz U, Gross BE, Sumer SO, Aksoy BA, et al. The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data. Cancer Disco. 2012;2:401–4.

    Article  Google Scholar 

Download references

Acknowledgements

We want to thank Marina Grassi for technical support and Mauro Mason for support on graphic design. GG is a student of the PhD program in Cellular and Molecular Biology at University of Bologna, Bologna, Italy.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: VS and AC; Investigation: GG, BD, FR, FT, DCA, and VS; Methodology; GG, BD, IFV, FT, and VS; Data analysis: IFV, DR, and GC; Writing and reviewing the paper: VS, DCA, and AC.

Corresponding author

Correspondence to Valentina Sancisi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Gobbi, G., Donati, B., Do Valle, I.F. et al. The Hippo pathway modulates resistance to BET proteins inhibitors in lung cancer cells. Oncogene 38, 6801–6817 (2019). https://doi.org/10.1038/s41388-019-0924-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-019-0924-1

This article is cited by

Search

Quick links