Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Regulation of neuroblastoma migration, invasion, and in vivo metastasis by genetic and pharmacological manipulation of MDA-9/Syntenin

Abstract

Despite multi-modality treatments, prognosis for advanced stage neuroblastoma (NB) remains challenging with residual long-term disabilities in survivors. Advanced stage NB is metastatic, which is a principal cause of cancer-related deaths. We presently document a primary role of MDA-9 in NB progression and define the molecular mechanisms by which MDA-9 promotes transformed phenotypes. NB cell lines and clinical samples display elevated MDA-9 expression and bioinformatic analysis supports an association between elevated MDA-9 and bone metastasis and poor prognosis. Genetic (shmda-9, mda-9 siRNA) or pharmacological (small molecule inhibitor of protein-protein interactions; PDZ1i) blockade of MDA-9 decreases NB migration, invasion, and metastasis. Blocking mda-9 expression or disrupting MDA-9 partner protein interactions downregulates integrin α6 and β4, diminishing Src activity and suppressing Rho-Rac-Cdc42 activity. These signaling changes inhibit cofilin and matrix metalloproteinases reducing in vitro and in vivo NB cell migration. Overexpression of integrin α6 and β4 rescues the invasion phenotype and increases Src activity, supporting integrins as essential regulators of MDA-9-mediated NB migration and invasion. We identify MDA-9 as a key contributor to NB pathogenesis and show that genetic or pharmacological inhibition suppresses NB pathogenesis by an integrin-mediated Src-disruption pathway.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Shohet J, Foster J. Neuroblastoma. BMJ. 2017;357:j1863.

    Article  Google Scholar 

  2. Chaturvedi NK, McGuire TR, Coulter DW, Shukla A, McIntyre EM, Sharp JG, et al. Improved therapy for neuroblastoma using a combination approach: superior efficacy with vismodegib and topotecan. Oncotarget. 2016;7:15215–29.

    Article  Google Scholar 

  3. Sarkar D, Boukerche H, Su Z-Z, Fisher PB. mda-9/syntenin: more than just a simple adapter protein when it comes to cancer metastasis. Cancer Res. 2008;68:3087–93.

    Article  CAS  Google Scholar 

  4. Welch DR, Fisher PC, editors. Molecular and cellular basis of metastasis: road to therapy. In: Advances in Cancer Research; 2016;132. p. 1–390.

  5. Stivarou T, Patsavoudi E. Extracellular molecules involved in cancer cell invasion. Cancers 2015;7:238–65.

    Article  CAS  Google Scholar 

  6. Kaminska K, Szczylik C, Bielecka ZF, Bartnik E, Porta C, Lian F, et al. The role of the cell-cell interactions in cancer progression. J Cell Mol Med. 2015;19:283–96.

    Article  Google Scholar 

  7. Kegelman TP, Das SK, Emdad L, Hu B, Menezes ME, Bhoopathi P, et al. Targeting tumor invasion: the roles of MDA-9/Syntenin. Expert Opin Ther Targets. 2015;19:97–112.

    Article  CAS  Google Scholar 

  8. Lin JJ, Jiang H, Fisher PB. Characterization of a novel melanoma differentiation associated gene, mda-9, that is down-regulated during terminal cell differentiation. Mol Cell Differ. 1996;4:317–33.

    Google Scholar 

  9. Lin JJ, Jiang H, Fisher PB. Melanoma differentiation associated gene-9 is a human gamma interferon responsive gene. Gene. 1998;207:105–10.

    Article  CAS  Google Scholar 

  10. Das SK, Sarkar D, Emdad L, Fisher PB. MDA-9/syntenin: an emerging global molecular target regulating cancer invasion and metastasis. Adv Cancer Res. 2019;144:137–191.

    Article  Google Scholar 

  11. Boukerche H, Su Z-z, Emdad L, Baril P, Balme B, Thomas L, et al. mda-9/Syntenin: a positive regulator of melanoma metastasis. Cancer Res. 2005;65:10901–11.

    Article  CAS  Google Scholar 

  12. Das SK, Bhutia SK, Kegelman TP, Peachy L, Oyesanya RA, Dasgupta S, et al. MDA-9/syntenin: a positive gatekeeper of melanoma metastasis. Front Biosci. 2012;17:1–15.

    Article  CAS  Google Scholar 

  13. Kegelman TP, Wu B, Das SK, Talukdar S, Beckta JM, Hu B, et al. Inhibition of radiation-induced glioblastoma invasion by genetic and pharmacological targeting of MDA-9/Syntenin. Proc Natl Acad Sci USA. 2017;114:370–5.

    Article  CAS  Google Scholar 

  14. Guan X. Cancer metastases: challenges and opportunities. Acta Pharm Sin B. 2015;5:402–18.

    Article  Google Scholar 

  15. Hood JD, Cheresh DA. Role of integrins in cell invasion and migration. Nat Rev Cancer. 2002;2:91–100.

    Article  Google Scholar 

  16. Meyer A, van Golen CM, Kim B, van Golen KL, Feldman EL. Integrin expression regulates neuroblastoma attachment and migration. Neoplasia. 2004;6:332–42.

    Article  CAS  Google Scholar 

  17. Bhoopathi P, Gondi CS, Gujrati M, Dinh DH, Lakka SS. SPARC mediates Src-induced disruption of actin cytoskeleton via inactivation of small GTPases Rho-Rac-Cdc42. Cell Signal. 2011;23:1978–87.

    Article  CAS  Google Scholar 

  18. Boukerche H, Su Z-z, Prevot C, Sarkar D, Fisher PB. mda-9/Syntenin promotes metastasis in human melanoma cells by activating c-Src. Proc Natl Acad Sci USA. 2008;105:15914.

    Article  CAS  Google Scholar 

  19. Kegelman TP, Das SK, Hu B, Bacolod MD, Fuller CE, Menezes ME, et al. MDA-9/syntenin is a key regulator of glioma pathogenesis. Neuro Oncol. 2014;16:50–61.

    Article  CAS  Google Scholar 

  20. Dasgupta S, Menezes ME, Mukhopadhyay ND, Das SK, Shao C, Emdad L, et al. Novel role of MDA-9/syntenin in regulating urothelial cell proliferation by modulating EGFR signaling. Clin Cancer Res. 2013;19:4621–33.

    Article  CAS  Google Scholar 

  21. Das SK, Pradhan AK, Bhoopathi P, Talukdar S, Shen X-N, Sarker D, et al. The MDA-9/Syntenin/IGF-1R/STAT3 axis directs prostate cancer invasion. Cancer Res. 2018;78:2852–63.

    Article  CAS  Google Scholar 

  22. Bacolod MD, Das SK, Sokhi UK, Bradley S, Fenstermacher DA, Pellecchia M, et al. Examination of epigenetic and other molecular factors associated with mda-9/Syntenin dysregulation in cancer through integrated analyses of public databases. Adv Cancer Res. 2015;127:49–121.

    Article  CAS  Google Scholar 

  23. Seong BK, Fathers KE, Hallett R, Yung CK, Stein LD, Mouaaz S, et al. A metastatic mouse model identifies genes that regulate neuroblastoma metastasis. Cancer Res. 2017;77:696–706.

    Article  CAS  Google Scholar 

  24. Morandi F, Scaruffi P, Gallo F, Stigliani S, Moretti S, Bonassi S, et al. Bone marrow-infiltrating human neuroblastoma cells express high levels of calprotectin and HLA-G proteins. PLoS One. 2012;7:e29922.

    Article  CAS  Google Scholar 

  25. Rastogi P, Naseem S, Varma N, Das R, Ahluwalia J, Sachdeva MU, et al. Bone marrow involvement in neuroblastoma: a study of hemato-morphological features. Indian J Hematol Blood Transfus. 2015;31:57–60.

    Article  Google Scholar 

  26. Schwartz MA. Integrins and extracellular matrix in mechanotransduction. Cold Spring Harb Perspect Biol. 2010;2:a005066.

    Article  CAS  Google Scholar 

  27. Takahashi C, Sheng Z, Horan TP, Kitayama H, Maki M, Hitomi K, et al. Regulation of matrix metalloproteinase-9 and inhibition of tumor invasion by the membrane-anchored glycoprotein RECK. Proc Natl Acad Sci USA. 1998;95:13221–6.

    Article  CAS  Google Scholar 

  28. Webb AH, Gao BT, Goldsmith ZK, Irvine AS, Saleh N, Lee RP, et al. Inhibition of MMP-2 and MMP-9 decreases cellular migration, and angiogenesis in in vitro models of retinoblastoma. BMC Cancer. 2017;17:434.

    Article  Google Scholar 

  29. Lee SH, Dominguez R. Regulation of actin cytoskeleton dynamics in cells. Mol Cells. 2010;29:311–25.

    Article  CAS  Google Scholar 

  30. Son H, Moon A. Epithelial-mesenchymal transition and cell invasion. Toxicol Res. 2010;26:245–52.

    Article  CAS  Google Scholar 

  31. Nakajima S, Doi R, Toyoda E, Tsuji S, Wada M, Koizumi M, et al. N-cadherin expression and epithelial-mesenchymal transition in pancreatic carcinoma. Clin Cancer Res. 2004;10:4125–33.

    Article  CAS  Google Scholar 

  32. Miao H, Li S, Hu YL, Yuan S, Zhao Y, Chen BP, et al. Differential regulation of Rho GTPases by beta1 and beta3 integrins: the role of an extracellular domain of integrin in intracellular signaling. J Cell Sci. 2002;115:2199–206.

    CAS  PubMed  Google Scholar 

  33. Russell AJ, Fincher EF, Millman L, Smith R, Vela V, Waterman EA, et al. Alpha 6 beta 4 integrin regulates keratinocyte chemotaxis through differential GTPase activation and antagonism of alpha 3 beta 1 integrin. J Cell Sci. 2003;116:3543–56.

    Article  CAS  Google Scholar 

  34. O’Connor KL, Chen M, Towers LN. Integrin alpha6beta4 cooperates with LPA signaling to stimulate Rac through AKAP-Lbc-mediated RhoA activation. Am J Physiol Cell Physiol. 2012;302:C605–14.

    Article  Google Scholar 

  35. Das SK, Bhutia SK, Azab B, Kegelman TP, Peachy L, Santhekadur PK, et al. MDA-9/Syntenin and IGFBP-2 promote angiogenesis in human melanoma. Cancer Res. 2013;73:844–54.

    Article  CAS  Google Scholar 

  36. Das SK, Guo C, Pradhan AK, Bhoopathi P, Talukdar S, Shen X-N, et al. Knockout of MDA-9/Syntenin (SDCBP) expression in the microenvironment dampens tumor-supporting inflammation and inhibits melanoma metastasis. Oncotarget. 2016;7:46848–61.

    PubMed  PubMed Central  Google Scholar 

  37. Das SK, Kegelman TP, Pradhan AJ, Bhoopathi P, Talukdar S, Maji S, et al. Suppression of prostate cancer pathogenesis using MDA-9/Syntenin (SDCBP)PDZ1 small molecule inhibitor. Mol Cancer Ther. 2019 pii: molcanther.1019.2018. https://doi.org/10.1158/1535-7163.MCT-18-1019.

  38. Menezes ME, Shen XN, Das SK, Emdad L, Sarkar D, Fisher PB. MDA-9/Syntenin (SDCBP) modulates small GTPases RhoA and Cdc42 via transforming growth factor beta1 to enhance epithelial-mesenchymal transition in breast cancer. Oncotarget. 2016;7:80175–89.

    Article  Google Scholar 

  39. Das SK, Bhutia SK, Sokhi UK, Azab B, Su Z-z, Boukerche H, et al. Raf kinase inhibitor RKIP inhibits MDA-9/syntenin-mediated metastasis in melanoma. Cancer Res. 2012;72:6217–26.

    Article  CAS  Google Scholar 

  40. Kramer M, Ribeiro D, Arsenian-Henriksson M, Deller T, Rohrer H. Proliferation and survival of embryonic sympathetic neuroblasts by MYCN and activated ALK signaling. J Neurosci. 2016;36:10425–39.

    Article  CAS  Google Scholar 

  41. Melzer C, von der Ohe J, Hass R. Breast carcinoma: from initial tumor cell detachment to settlement at secondary sites. Biomed Res Int. 2017;2017:8534371.

    Article  Google Scholar 

  42. Talukdar S, Das SK, Pradhan AK, Emdad L, Shen XN, Windle JJ, et al. Novel function of MDA-9/Syntenin (SDCBP) as a regulator of survival and stemness in glioma stem cells. Oncotarget. 2016;7:54102–19.

    Article  Google Scholar 

  43. Talukdar S, Pradhan AK, Bhoopathi P, Shen XN, August LA, Windle JJ, et al. Regulation of protective autophagy in anoikis-resistant glioma stem cells by SDCBP/MDA-9/Syntenin. Autophagy. 2018;14:1845–6.

    Article  CAS  Google Scholar 

  44. Talukdar S, Pradhan AK, Bhoopathi P, Shen X-N, August LA, Windle JJ, et al. MDA-9/Syntenin regulates protective autophagy in anoikis-resistant glioma stem cells. Proc Natl Acad Sci USA. 2018;115:5768–73.

    Article  CAS  Google Scholar 

  45. Das SK, Sarkar D, Cavenee WK, Emdad L, Fisher PB. Rethinking glioblastoma therapy: mda-9/syntenin targeted small molecule. ACS Chem Neurosci. 2019;10:1121–1123.

    Article  CAS  Google Scholar 

  46. Dominguez-Gimenez P, Brown NH, Martin-Bermudo MD. Integrin-ECM interactions regulate the changes in cell shape driving the morphogenesis of the Drosophila wing epithelium. J Cell Sci. 2007;120:1061–71.

    Article  CAS  Google Scholar 

  47. Bolos V, Gasent JM, Lopez-Tarruella S, Grande E. The dual kinase complex FAK-Src as a promising therapeutic target in cancer. Onco Targets Ther. 2010;3:83–97.

    Article  CAS  Google Scholar 

  48. Mercurio AM, Rabinovitz I, Shaw LM. The alpha 6 beta 4 integrin and epithelial cell migration. Curr Opin Cell Biol. 2001;13:541–5.

    Article  CAS  Google Scholar 

  49. Colburn ZT, Jones JCR. Complexes of α6β4 integrin and vimentin act as signaling hubs to regulate epithelial cell migration. J Cell Sci. 2018;131:jcs214593.

    Article  Google Scholar 

  50. Bhoopathi P, Lee N, Pradhan AK, Shen XN, Das SK, Sarkar D, et al. mda-7/IL-24 induces cell death in neuroblastoma through a novel mechanism involving AIF and ATM. Cancer Res. 2016;76:3572–82.

    Article  CAS  Google Scholar 

  51. Su Z-Z, Kang D-c, Chen Y, Pekarskaya O, Chao W, Volsky DJ, et al. Identification and cloning of human astrocyte genes displaying elevated expression after infection with HIV-1 or exposure to HIV-1 envelope glycoprotein by rapid subtraction hybridization, RaSH. Oncogene. 2002;21:3592–602.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Dr Xue-Ning Shen for outstanding technical assistance. We also thank Dr Martin A. Schwartz (Cardiovascular Research Center, Mellon Prostate Cancer Institute, Departments of Microbiology and Biomedical Engineering, University of Virginia, Charlottesville, VA) for providing pGEX-TRBD, Dr. Baroda S, for providing pGEX-Rac1, and pGEX-Cdc42 and we thank Dr Filippo Giancotti for pRK5 alpha6, and beta4 plasmids. Services and products in support of the research project were also provided by the VCU Massey Cancer Center Cancer Mouse Model Shared Resource.

Funding

The present study was supported in part by the National Foundation for Cancer Research (NFCR) (to PBF), NCI Cancer Center Support Grant to VCU Massey Cancer Center (MCC) P30 CA016059 (to PBF and DS), the VCU Institute of Molecular Medicine (VIMM) (PBF) and the Genetics Enhancement Fund (PBF, SKD, and LE). Support was also provided by a Sponsored Research Agreement from InVaMet Therapeutics, Inc. (IVMT) (SKD). PBF holds the Thelma Newmeyer Corman Chair in Cancer Research at the MCC.

Author contributions

Conception and design: PB, SKD, and PBF. Development of methodology: PB, SKD, and AKP. Acquisition of data (provided animals, acquired and managed patients, provided facilities, etc.): PB, AKP. Analysis and interpretation of data (e.g., statistical analysis, biostatistics, computational analysis): PB, MDB, LE, SKD, PBF. Writing, review, and/or revision of the manuscript: PB, LE, DS, SKD, PBF.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul B. Fisher.

Ethics declarations

Conflict of interest

PBF is a founder of InVaMet Therapeutics, Inc. (IVMT). PBF, Virginia Commonwealth University and the Sanford Burnham Prebys Medical Discovery Institute own stock in IVMT. SKD is the Principle Investigator of a SRA provided by InVaMet Therapeutics, Inc. to Virginia Commonwealth University. No other authors declare any potential conflicts with this research.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhoopathi, P., Pradhan, A.K., Bacolod, M.D. et al. Regulation of neuroblastoma migration, invasion, and in vivo metastasis by genetic and pharmacological manipulation of MDA-9/Syntenin. Oncogene 38, 6781–6793 (2019). https://doi.org/10.1038/s41388-019-0920-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-019-0920-5

This article is cited by

Search

Quick links