Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Epigenetic loss of AOX1 expression via EZH2 leads to metabolic deregulations and promotes bladder cancer progression

A Correction to this article was published on 17 August 2020


Advanced Bladder Cancer (BLCA) remains a clinical challenge that lacks effective therapeutic measures. Here, we show that distinct, stage-wise metabolic alterations in BLCA are associated with the loss of function of aldehyde oxidase (AOX1). AOX1 associated metabolites have a high predictive value for advanced BLCA and our findings demonstrate that AOX1 is epigenetically silenced during BLCA progression by the methyltransferase activity of EZH2. Knockdown (KD) of AOX1 in normal bladder epithelial cells re-wires the tryptophan-kynurenine pathway resulting in elevated NADP levels which may increase metabolic flux through the pentose phosphate (PPP) pathway, enabling increased nucleotide synthesis, and promoting cell invasion. Inhibition of NADP synthesis rescues the metabolic effects of AOX1 KD. Ectopic AOX1 expression decreases NADP production, PPP flux and nucleotide synthesis, while decreasing invasion in cell line models and suppressing growth in tumor xenografts. Further gain and loss of AOX1 confirm the EZH2-dependent activation, metabolic deregulation, and tumor growth in BLCA. Our findings highlight the therapeutic potential of AOX1 and provide a basis for the development of prognostic markers for advanced BLCA.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7


  1. 1.

    Ferlay J, Soerjomataram I, Dikshit R, Eser S, Mathers C, Rebelo M, et al. Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer. 2015;136:E359–86.

    CAS  Article  Google Scholar 

  2. 2.

    Siegel RL, Miller KD, Jemal A. Cancer statistics, 2018. CA Cancer J Clin. 2018;68:7–30.

    PubMed  Google Scholar 

  3. 3.

    Sievert KD, Amend B, Nagele U, Schilling D, Bedke J, Horstmann M, et al. Economic aspects of bladder cancer: what are the benefits and costs? World J Urol. 2009;27:295–300.

    CAS  PubMed  PubMed Central  Google Scholar 

  4. 4.

    Thoma C. Bladder cancer: genomics of noninvasive disease. Nat Rev Urol. 2018;15:1.

    PubMed  Google Scholar 

  5. 5.

    Hurst CD, Alder O, Platt FM, Droop A, Stead LF, Burns JE, et al. Genomic subtypes of non-invasive bladder cancer with distinct metabolic profile and female gender bias in KDM6A mutation frequency. Cancer Cell. 2017;32:701–15 e7.

    CAS  PubMed  PubMed Central  Google Scholar 

  6. 6.

    Garattini E, Fratelli M, Terao M. The mammalian aldehyde oxidase gene family. Hum Genom. 2009;4:119–30.

    CAS  Google Scholar 

  7. 7.

    Garattini E, Fratelli M, Terao M. Mammalian aldehyde oxidases: genetics, evolution and biochemistry. Cell Mol Life Sci. 2008;65:1019–48.

    CAS  PubMed  Google Scholar 

  8. 8.

    Kitamura S, Sugihara K, Ohta S. Drug-metabolizing ability of molybdenum hydroxylases. Drug Metab Pharm. 2006;21:83–98.

    CAS  Google Scholar 

  9. 9.

    Putluri N, Shojaie A, Vasu VT, Vareed SK, Nalluri S, Putluri V, et al. Metabolomic profiling reveals potential markers and bioprocesses altered in bladder cancer progression. Cancer Res. 2011;71:7376–86.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. 10.

    Baylin SB, Herman JG, Graff JR, Vertino PM, Issa JP. Alterations in DNA methylation: a fundamental aspect of neoplasia. Adv Cancer Res. 1998;72:141–96.

    CAS  PubMed  Google Scholar 

  11. 11.

    Merlo A, Herman JG, Mao L, Lee DJ, Gabrielson E, Burger PC, et al. 5’ CpG island methylation is associated with transcriptional silencing of the tumour suppressor p16/CDKN2/MTS1 in human cancers. Nat Med. 1995;1:686–92.

    CAS  PubMed  Google Scholar 

  12. 12.

    Esteller M, Tortola S, Toyota M, Capella G, Peinado MA, Baylin SB, et al. Hypermethylation-associated inactivation ofp14(ARF) is independent of p16(INK4a) methylation and p53 mutational status. Cancer Res. 2000;60:129–33.

    CAS  PubMed  Google Scholar 

  13. 13.

    Di Croce L, Helin K. Transcriptional regulation by Polycomb group proteins. Nat Struct Mol Biol. 2013;20:1147–55.

    PubMed  Google Scholar 

  14. 14.

    Sun S, Yu F, Zhang L, Zhou X. EZH2, an on-off valve in signal network of tumor cells. Cell Signal. 2016;28:481–7.

    CAS  PubMed  Google Scholar 

  15. 15.

    Ma J, Shojaie A, Michailidis G. Network-based pathway enrichment analysis with incomplete network information. Bioinformatics. 2016;32:3165–74.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. 16.

    Kim WJ, Kim EJ, Kim SK, Kim YJ, Ha YS, Jeong P, et al. Predictive value of progression-related gene classifier in primary non-muscle invasive bladder cancer. Mol Cancer. 2010;9:3.

    PubMed  PubMed Central  Google Scholar 

  17. 17.

    Cancer Genome Atlas Research Network Comprehensive molecular characterization of urothelial bladder carcinoma. Nature. 2014;507:315–22.

    Google Scholar 

  18. 18.

    Sanchez-Carbayo M, Socci ND, Lozano J, Saint F, Cordon-Cardo C. Defining molecular profiles of poor outcome in patients with invasive bladder cancer using oligonucleotide microarrays. J Clin Oncol. 2006;24:778–89.

    CAS  PubMed  Google Scholar 

  19. 19.

    Choi W, Porten S, Kim S, Willis D, Plimack ER, Hoffman-Censits J, et al. Identification of distinct basal and luminal subtypes of muscle-invasive bladder cancer with different sensitivities to frontline chemotherapy. Cancer Cell. 2014;25:152–65.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. 20.

    McCabe MT, Ott HM, Ganji G, Korenchuk S, Thompson C, Van Aller GS, et al. EZH2 inhibition as a therapeutic strategy for lymphoma with EZH2-activating mutations. Nature. 2012;492:108–12.

    CAS  PubMed  Google Scholar 

  21. 21.

    Vire E, Brenner C, Deplus R, Blanchon L, Fraga M, Didelot C, et al. The Polycomb group protein EZH2 directly controls DNA methylation. Nature. 2006;439:871–4.

    CAS  PubMed  Google Scholar 

  22. 22.

    Kleer CG, Cao Q, Varambally S, Shen R, Ota I, Tomlins SA, et al. EZH2 is a marker of aggressive breast cancer and promotes neoplastic transformation of breast epithelial cells. Proc Natl Acad Sci USA. 2003;100:11606–11.

    CAS  PubMed  Google Scholar 

  23. 23.

    Oster B, Thorsen K, Lamy P, Wojdacz TK, Hansen LL, Birkenkamp-Demtroder K, et al. Identification and validation of highly frequent CpG island hypermethylation in colorectal adenomas and carcinomas. Int J Cancer. 2011;129:2855–66.

    CAS  PubMed  Google Scholar 

  24. 24.

    Salter M, Pogson CI. The role of tryptophan 2,3-dioxygenase in the hormonal control of tryptophan metabolism in isolated rat liver cells. Effects of glucocorticoids and experimental diabetes. Biochem J. 1985;229:499–504.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. 25.

    D’Amato NC, Rogers TJ, Gordon MA, Greene LI, Cochrane DR, Spoelstra NS, et al. A TDO2-AhR signaling axis facilitates anoikis resistance and metastasis in triple-negative breast cancer. Cancer Res. 2015;75:4651–64.

    PubMed  PubMed Central  Google Scholar 

  26. 26.

    Yang J, Weinberg RA. Epithelial-mesenchymal transition: at the crossroads of development and tumor metastasis. Dev Cell. 2008;14:818–29.

    CAS  PubMed  Google Scholar 

  27. 27.

    De Craene B, Berx G. Regulatory networks defining EMT during cancer initiation and progression. Nat Rev Cancer. 2013;13:97–110.

    PubMed  Google Scholar 

  28. 28.

    Deryugina EI, Quigley JP. Chick embryo chorioallantoic membrane model systems to study and visualize human tumor cell metastasis. Histochem Cell Biol. 2008;130:1119–30.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. 29.

    Kompier LC, Lurkin I, van der Aa MN, van Rhijn BW, van der Kwast TH, Zwarthoff EC. FGFR3, HRAS, KRAS, NRAS and PIK3CA mutations in bladder cancer and their potential as biomarkers for surveillance and therapy. PLoS ONE. 2010;5:e13821.

    PubMed  PubMed Central  Google Scholar 

  30. 30.

    Vantaku V, Dong J, Ambati CR, Perera D, Donepudi SR, Amara CS, et al. Multi-omics integration analysis robustly predicts high-grade patient survival and identifies CPT1B effect on fatty acid metabolism in Bladder Cancer. Clin Cancer Res. 2019;15:3689–701.

    Google Scholar 

  31. 31.

    Platten M, Wick W, Van den Eynde BJ. Tryptophan catabolism in cancer: beyond IDO and tryptophan depletion. Cancer Res. 2012;72:5435–40.

    CAS  PubMed  Google Scholar 

  32. 32.

    Ablain J, de The H. Retinoic acid signaling in cancer: the parable of acute promyelocytic leukemia. Int J Cancer. 2014;135:2262–72.

    CAS  PubMed  Google Scholar 

  33. 33.

    Yang M, Pollard PJ. Succinate: a new epigenetic hacker. Cancer Cell. 2013;23:709–11.

    CAS  PubMed  Google Scholar 

  34. 34.

    Zhai L, Spranger S, Binder DC, Gritsina G, Lauing KL, Giles FJ, et al. Molecular pathways: targeting IDO1 and other tryptophan dioxygenases for cancer immunotherapy. Clin Cancer Res. 2015;21:5427–33.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. 35.

    Icard P, Poulain L, Lincet H. Understanding the central role of citrate in the metabolism of cancer cells. Biochim Biophys Acta. 2012;1825:111–6.

    CAS  PubMed  Google Scholar 

  36. 36.

    Ozturk S, Papageorgis P, Wong CK, Lambert AW, Abdolmaleky HM, Thiagalingam A, et al. SDPR functions as a metastasis suppressor in breast cancer by promoting apoptosis. Proc Natl Acad Sci USA. 2016;113:638–43.

    CAS  PubMed  Google Scholar 

  37. 37.

    Haldrup C, Mundbjerg K, Vestergaard EM, Lamy P, Wild P, Schulz WA, et al. DNA methylation signatures for prediction of biochemical recurrence after radical prostatectomy of clinically localized prostate cancer. J Clin Oncol. 2013;31:3250–8.

    CAS  PubMed  Google Scholar 

  38. 38.

    Park JS, Choi SB, Chung JW, Kim SW, Kim DW. Classification of serous ovarian tumors based on microarray data using multicategory support vector machines. Conf Proc IEEE Eng Med Biol Soc. 2014;2014:3430–3.

    Google Scholar 

  39. 39.

    Varambally S, Dhanasekaran SM, Zhou M, Barrette TR, Kumar-Sinha C, Sanda MG, et al. The polycomb group protein EZH2 is involved in progression of prostate cancer. Nature. 2002;419:624–9.

    CAS  PubMed  Google Scholar 

  40. 40.

    Bachmann IM, Halvorsen OJ, Collett K, Stefansson IM, Straume O, Haukaas SA, et al. EZH2 expression is associated with high proliferation rate and aggressive tumor subgroups in cutaneous melanoma and cancers of the endometrium, prostate, and breast. J Clin Oncol. 2006;24:268–73.

    CAS  PubMed  Google Scholar 

  41. 41.

    Sudo T, Utsunomiya T, Mimori K, Nagahara H, Ogawa K, Inoue H, et al. Clinicopathological significance of EZH2 mRNA expression in patients with hepatocellular carcinoma. Br J Cancer. 2005;92:1754–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  42. 42.

    Hussain M, Rao M, Humphries AE, Hong JA, Liu F, Yang M, et al. Tobacco smoke induces polycomb-mediated repression of Dickkopf-1 in lung cancer cells. Cancer Res. 2009;69:3570–8.

    CAS  PubMed  Google Scholar 

  43. 43.

    Yan J, Ng SB, Tay JL, Lin B, Koh TL, Tan J, et al. EZH2 overexpression in natural killer/T-cell lymphoma confers growth advantage independently of histone methyltransferase activity. Blood. 2013;121:4512–20.

    CAS  PubMed  Google Scholar 

  44. 44.

    Tan JZ, Yan Y, Wang XX, Jiang Y, Xu HE. EZH2: biology, disease, and structure-based drug discovery. Acta Pharmacol Sin. 2014;35:161–74.

    CAS  PubMed  Google Scholar 

  45. 45.

    The EZH2 Inhibitor Tazemetostat Is Well Tolerated in a Phase I Trial. Cancer Discov. 2018;8:OF15., Accessed 9 Apr 2018.

  46. 46.

    Kim KH, Roberts CW. Targeting EZH2 in cancer. Nat Med. 2016;22:128–34.

    CAS  PubMed  PubMed Central  Google Scholar 

  47. 47.

    Dudziec E, Goepel JR, Catto JW. Global epigenetic profiling in bladder cancer. Epigenomics. 2011;3:35–45.

    CAS  PubMed  Google Scholar 

  48. 48.

    Reinert T, Modin C, Castano FM, Lamy P, Wojdacz TK, Hansen LL, et al. Comprehensive genome methylation analysis in bladder cancer: identification and validation of novel methylated genes and application of these as urinary tumor markers. Clin Cancer Res. 2011;17:5582–92.

    CAS  PubMed  Google Scholar 

  49. 49.

    Wolff EM, Chihara Y, Pan F, Weisenberger DJ, Siegmund KD, Sugano K, et al. Unique DNA methylation patterns distinguish noninvasive and invasive urothelial cancers and establish an epigenetic field defect in premalignant tissue. Cancer Res. 2010;70:8169–78.

    CAS  PubMed  PubMed Central  Google Scholar 

  50. 50.

    Agledal L, Niere M, Ziegler M. The phosphate makes a difference: cellular functions of NADP. Redox Rep. 2010;15:2–10.

    CAS  PubMed  Google Scholar 

  51. 51.

    Ying W. NAD+/NADH and NADP+/NADPH in cellular functions and cell death: regulation and biological consequences. Antioxid Redox Signal. 2008;10:179–206.

    CAS  PubMed  Google Scholar 

  52. 52.

    Prendergast GC. Cancer: why tumours eat tryptophan. Nature. 2011;478:192–4.

    CAS  PubMed  Google Scholar 

  53. 53.

    Chen Y, Guillemin GJ. Kynurenine pathway metabolites in humans: disease and healthy States. Int J Tryptophan Res. 2009;2:1–19.

    PubMed  PubMed Central  Google Scholar 

  54. 54.

    Chalkiadaki A, Guarente L. The multifaceted functions of sirtuins in cancer. Nat Rev Cancer. 2015;15:608–24.

    CAS  PubMed  Google Scholar 

  55. 55.

    Beaconsfield P, Ginsburg J, Jeacock MK. Glucose metabolism via the pentose phosphate pathway relative to nucleic acid and protein synthesis in the human placenta. Dev Med Child Neurol. 1964;6:469–74.

    CAS  PubMed  Google Scholar 

  56. 56.

    Davidson B, Abeler VM, Forsund M, Holth A, Yang Y, Kobayashi Y, et al. Gene expression signatures of primary and metastatic uterine leiomyosarcoma. Hum Pathol. 2014;45:691–700.

    CAS  PubMed  Google Scholar 

  57. 57.

    Opitz CA, Litzenburger UM, Sahm F, Ott M, Tritschler I, Trump S, et al. An endogenous tumour-promoting ligand of the human aryl hydrocarbon receptor. Nature. 2011;478:197–203.

    CAS  PubMed  Google Scholar 

  58. 58.

    Minn AJ, Gupta GP, Siegel PM, Bos PD, Shu W, Giri DD, et al. Genes that mediate breast cancer metastasis to lung. Nature. 2005;436:518–24.

    CAS  PubMed  PubMed Central  Google Scholar 

  59. 59.

    Bos PD, Zhang XH, Nadal C, Shu W, Gomis RR, Nguyen DX, et al. Genes that mediate breast cancer metastasis to the brain. Nature. 2009;459:1005–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  60. 60.

    Jin F, Thaiparambil J, Donepudi SR, Vantaku V, Piyarathna DWB, Maity S, et al. Tobacco-specific carcinogens induce hypermethylation, DNA adducts, and DNA damage in bladder cancer. Cancer Prev Res. 2017;10:588–97.

    CAS  Google Scholar 

  61. 61.

    Piyarathna DWB, Rajendiran TM, Putluri V, Vantaku V, Soni T, von Rundstedt FC, et al. Distinct lipidomic landscapes associated with clinical stages of urothelial cancer of the bladder. Eur Urol Focus. 2018;4:907–915.

  62. 62.

    Terunuma A, Putluri N, Mishra P, Mathe EA, Dorsey TH, Yi M, et al. MYC-driven accumulation of 2-hydroxyglutarate is associated with breast cancer prognosis. J Clin Invest. 2014;124:398–412.

    CAS  PubMed  Google Scholar 

  63. 63.

    Putluri N, Maity S, Kommagani R, Creighton CJ, Putluri V, Chen F, et al. Pathway-centric integrative analysis identifies RRM2 as a prognostic marker in breast cancer associated with poor survival and tamoxifen resistance. Neoplasia. 2014;16:390–402.

    CAS  PubMed  PubMed Central  Google Scholar 

  64. 64.

    Putluri N, Shojaie A, Vasu VT, Nalluri S, Vareed SK, Putluri V, et al. Metabolomic profiling reveals a role for androgen in activating amino acid metabolism and methylation in prostate cancer cells. PLoS ONE. 2011;6:e21417.

    CAS  PubMed  PubMed Central  Google Scholar 

  65. 65.

    Bhowmik SK, Ramirez-Pena E, Arnold JM, Putluri V, Sphyris N, Michailidis G, et al. EMT-induced metabolite signature identifies poor clinical outcome. Oncotarget. 2015;6:42651–60.

    PubMed  PubMed Central  Google Scholar 

  66. 66.

    Estecio MR, Yan PS, Ibrahim AE, Tellez CS, Shen L, Huang TH, et al. High-throughput methylation profiling by MCA coupled to CpG island microarray. Genome Res. 2007;17:1529–36.

    CAS  PubMed  PubMed Central  Google Scholar 

  67. 67.

    Blecher-Gonen R, Barnett-Itzhaki Z, Jaitin D, Amann-Zalcenstein D, Lara-Astiaso D, Amit I. High-throughput chromatin immunoprecipitation for genome-wide mapping of in vivo protein-DNA interactions and epigenomic states. Nat Protoc. 2013;8:539–54.

    PubMed  Google Scholar 

  68. 68.

    O’Reilly MS, Boehm T, Shing Y, Fukai N, Vasios G, Lane WS, et al. Endostatin: an endogenous inhibitor of angiogenesis and tumor growth. Cell. 1997;88:277–85.

    PubMed  Google Scholar 

  69. 69.

    Li M, Pathak RR, Lopez-Rivera E, Friedman SL, Aguirre-Ghiso JA, Sikora AG. The in ovo chick chorioallantoic membrane (CAM) assay as an efficient xenograft model of hepatocellular carcinoma. J Vis Exp. 2015.

Download references


This research was fully supported by American Cancer Society (ACS) Award 127430-RSG-15-105-01-CNE (N.P.), NIH/NCI R01CA220297 (N.P), and NIH/NCI R01CA216426 (N.P.), partially supported by the following grants: NIH 1RO1CA133458-01 (A.S.K.), and NIH U01 CA167234, Komen CCR award to S.M.K. (CCR16380599) as well as funds from Alkek Center for Molecular Discovery (A.S.K.). This project was also supported by the Agilent Technologies Center of Excellence in Mass Spectrometry at Baylor College of Medicine, Metabolomics Core, Human Tissue Acquisition and Pathology at Baylor College of Medicine with funding from the NIH (P30 CA125123), CPRIT Proteomics and Metabolomics Core Facility (D.P.E.), (RP170005), and Dan L. Duncan Cancer Center. Imaging for this project was supported by the Integrated Microscopy Core at Baylor College of Medicine with funding from NIH (DK56338, CA125123, and 1S10OD020151-01), CPRIT (RP150578), the Dan L. Duncan Comprehensive Cancer Center, and the John S. Dunn Gulf Coast Consortium for Chemical Genomics. CAM assay was supported by the Patient-Derived Xenograft and Advanced in vivo Models Core Facility at Baylor College of Medicine with funding from the Cancer Prevention and Research Institute of Texas (CPRIT) grant #170691. Imaging for this project was supported by the Integrated Microscopy Core at Baylor College of Medicine with funding from NIH (DK56338, and CA125123), CPRIT (RP150578, RP170719), the Dan L. Duncan Comprehensive Cancer Center, and the John S. Dunn Gulf Coast Consortium for Chemical Genomics. Research reported in this study was supported by the National Cancer Institute of the National Institutes of Health under award number 5 P30 CA142543 09.

Author information




V.V., V.P., A.S. and N.P., conceived the project and wrote the manuscript with editorial input from all of the authors. V.V., V.P., D.A.B., S.M.K., Q.C. and N.P. designed the experiments. V.V., V.P., D.A.B., V.D., S.M.K., S.R.D., J.D., A.K.J., F.S. and B.K. performed the experiments. S.M., J.M., J.A., K.R. and C.C. assisted with the dataset analysis. A.S. and N.P. assisted with mass spectroscopy measurements and functional study. F.V.R. and Y.L. provided clinical specimens. F.V.R. and Y.L. provided clinical input on data interpretation. A.G.S. and H.V. performed the OVIVO experiments.

Corresponding author

Correspondence to Nagireddy Putluri.

Ethics declarations

Conflict of interest

S.M.K. is stake holder of NeoZenome Therapeutics Inc.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Vantaku, V., Putluri, V., Bader, D.A. et al. Epigenetic loss of AOX1 expression via EZH2 leads to metabolic deregulations and promotes bladder cancer progression. Oncogene 39, 6265–6285 (2020).

Download citation

Further reading


Quick links