Tumor-treating fields induce autophagy by blocking the Akt2/miR29b axis in glioblastoma cells


Tumor-treating fields (TTFs) — a type of electromagnetic field-based therapy using low-intensity electrical fields — has recently been characterized as a potential anticancer therapy for glioblastoma multiforme (GBM). However, the molecular mechanisms involved remain poorly understood. Our results show that the activation of autophagy contributes to the TTF-induced anti-GBM activity in vitro or in vivo and GBM patient stem cells or primary in vivo culture systems. TTF-treatment upregulated several autophagy-related genes (~2-fold) and induced cytomorphological changes. TTF-induced autophagy in GBM was associated with decreased Akt2 expression, not Akt1 or Akt3, via the mTOR/p70S6K pathway. An Affymetrix GeneChip miRNA 4.0 Array analysis revealed that TTFs altered the expression of many microRNAs (miRNAs). TTF-induced autophagy upregulated miR-29b, which subsequently suppressed the Akt signaling pathway. A luciferase reporter assay confirmed that TTFs induced miR-29b to target Akt2, negatively affecting Akt2 expression thereby triggering autophagy. TTF-induced autophagy suppressed tumor growth in GBM mouse models subjected to TTFs as determined by positron emission tomography and computed tomography (PET-CT). GBM patient stem cells and a primary in vivo culture system with high Akt2 levels also showed TTF-induced inhibition. Taken together, our results identified autophagy as a critical cell death pathway triggered by TTFs in GBM and indicate that TTF is a potential treatment option for GBM.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7


  1. 1.

    Johnson DR, Ma DJ, Buckner JC, Hammack JE. Conditional probability of long‐term survival in glioblastoma. Cancer. 2012;118:5608–13.

    Article  Google Scholar 

  2. 2.

    Sanai N, Berger MS. Glioma extent of resection and its impact on patient outcome. Neurosurgery. 2008;62:753–66.

    Article  Google Scholar 

  3. 3.

    Kirson ED, Gurvich Z, Schneiderman R, Dekel E, Itzhaki A, Wasserman Y, et al. Disruption of cancer cell replication by alternating electric fields. Cancer Res. 2004;64:3288–95.

    CAS  Article  Google Scholar 

  4. 4.

    NovoTTF-100A System. Premarket approval P100034. U.S. Food and Drug Administration, 2011. https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfpma/pma.cfm?id=P100034. Accessed 7 Feb 2018.

  5. 5.

    Kessler AF, Frömbling GE, Gross F, Hahn M, Dzokou W, Ernestus R-I, et al. Effects of tumor treating fields (TTFields) on glioblastoma cells are augmented by mitotic checkpoint inhibition. Cell Death Discov. 2018;5:12.

    Google Scholar 

  6. 6.

    Giladi M, Munster M, Schneiderman RS, Voloshin T, Porat Y, Blat R, et al. Tumor treating fields (TTFields) delay DNA damage repair following radiation treatment of glioma cells. Radiat Oncol. 2017;12:206.

    Article  Google Scholar 

  7. 7.

    Stupp R, Wong ET, Kanner AA, Steinberg D, Engelhard H, Heidecke V, et al. NovoTTF-100A versus physician’s choice chemotherapy in recurrent glioblastoma: a randomised phase III trial of a novel treatment modality. Eur J Cancer. 2012;48:2192–202.

    Article  Google Scholar 

  8. 8.

    Stupp R, Taillibert S, Kanner AA, Kesari S, Steinberg DM, Toms SA, et al. Maintenance therapy with tumor-treating fields plus temozolomide vs temozolomide alone for glioblastoma: a randomized clinical trial. JAMA. 2015;314:2535–43.

    CAS  Article  Google Scholar 

  9. 9.

    Stupp R, Taillibert S, Kanner A, Read W, Steinberg DM, Lhermitte B, et al. Effect of tumor-treating fields plus maintenance temozolomide vs maintenance temozolomide alone on survival in patients with glioblastoma: a randomized clinical trial. JAMA. 2017;318:2306–16.

    CAS  Article  Google Scholar 

  10. 10.

    Toms S, Kim C, Nicholas G, Ram ZJ, Jon O. Increased compliance with tumor treating fields therapy is prognostic for improved survival in the treatment of glioblastoma: a subgroup analysis of the EF-14 phase III trial. J Neuro-Oncol. 2019;141:467–73.

    CAS  Article  Google Scholar 

  11. 11.

    Davies AM, Weinberg U, Palti Y. Tumor treating fields: a new frontier in cancer therapy. Ann New Y Acad Sci. 2013;1291:86–95.

    Article  Google Scholar 

  12. 12.

    Kirson ED, Dbalý V, Tovaryš F, Vymazal J, Soustiel JF, Itzhaki A, et al. Alternating electric fields arrest cell proliferation in animal tumor models and human brain tumors. Proc Natl Acad Sci. 2007;104:10152–7.

    CAS  Article  Google Scholar 

  13. 13.

    Kim EH, Song HS, Yoo SH, Yoon M. Tumor treating fields inhibit glioblastoma cell migration, invasion and angiogenesis. Oncotarget. 2016;7:65125.

    PubMed  PubMed Central  Google Scholar 

  14. 14.

    Tsujimoto Y, Shimizu S. Another way to die: autophagic programmed cell death. Cell Death Differ. 2005;12:1528.

    CAS  Article  Google Scholar 

  15. 15.

    Boya P, Reggiori F, Codogno P. Emerging regulation and functions of autophagy. Nat Cell Biol. 2013;15:713.

    CAS  Article  Google Scholar 

  16. 16.

    Mathew R, Karantza-Wadsworth V, White E. Role of autophagy in cancer. Nat Rev Cancer. 2007;7:961.

    CAS  Article  Google Scholar 

  17. 17.

    Klionsky DJ, Abdelmohsen K, Abe A, Abedin MJ, Abeliovich H, Acevedo Arozena A, et al. Guidelines for the use and interpretation of assays for monitoring autophagy. Autophagy. 2016;12:1–222.

    Article  Google Scholar 

  18. 18.

    Bodine SC, Stitt TN, Gonzalez M, Kline WO, Stover GL, Bauerlein R, et al. Akt/mTOR pathway is a crucial regulator of skeletal muscle hypertrophy and can prevent muscle atrophy in vivo. Nat Cell Biol. 2001;3:1014.

    CAS  Article  Google Scholar 

  19. 19.

    Schmelzle T, Hall MN. TOR, a central controller of cell growth. Cell. 2000;103:253–62.

    CAS  Article  Google Scholar 

  20. 20.

    Oncomine. 2006. https://www.oncomine.org/resource/login.html. Accessed 7 Jan 2018.

  21. 21.

    SurvExpress. 2015. http://bioinformatica.mty.itesm.mx:8080/Biomatec/SurvivaX.jsp. Accessed 7 Jan 2018.

  22. 22.

    Plastaras JP, Dorsey JF, Carroll K, Kim S-H, Birnbaum MJ, El-Deiry WS. Role of PI3K/Akt signaling in TRAIL-and radiation-induced gastrointestinal apoptosis. Cancer Biol Ther. 2008;7:2047–53.

    CAS  Article  Google Scholar 

  23. 23.

    Stupp R, Taillibert S, Kanner A, Kesari S, Toms SA, Barnett GH, et al. Tumor treating fields (TTFields): A novel treatment modality added to standard chemo-and radiotherapy in newly diagnosed glioblastoma—First report of the full dataset of the EF14 randomized phase III trial. Am. Soc. Clin. Oncol. 2015;33:2000.

    Article  Google Scholar 

  24. 24.

    Kim EH, Kim YJ, Song HS, Jeong YK, Lee JY, Sung J, et al. Biological effect of an alternating electric field on cell proliferation and synergistic antimitotic effect in combination with ionizing radiation. Oncotarget. 2016;7:62267.

    PubMed  PubMed Central  Google Scholar 

  25. 25.

    Walter BA, Valera VA, Pinto PA, Merino MJ. Comprehensive microRNA profiling of prostate cancer. J Cancer. 2013;4:350.

    CAS  Article  Google Scholar 

  26. 26.

    Fohlin H, Pérez-Tenorio G, Fornander T, Skoog L, Nordenskjöld B, Carstensen J, et al. Akt2 expression is associated with good long-term prognosis in oestrogen receptor positive breast cancer. Eur J Cancer. 2013;49:1196–204.

    CAS  Article  Google Scholar 

  27. 27.

    Kreisberg JI, Malik SN, Prihoda TJ, Bedolla RG, Troyer DA, Kreisberg S, et al. Phosphorylation of Akt (Ser473) is an excellent predictor of poor clinical outcome in prostate cancer. Cancer Res. 2004;64:5232–6.

    CAS  Article  Google Scholar 

  28. 28.

    Pópulo H, Lopes JM, Soares P. The mTOR signalling pathway in human cancer. Int J Mol Sci. 2012;13:1886–918.

    Article  Google Scholar 

  29. 29.

    Bao S, Wu Q, McLendon RE, Hao Y, Shi Q, Hjelmeland AB, et al. Glioma stem cells promote radioresistance by preferential activation of the DNA damage response. Nature. 2006;444:756.

    CAS  Article  Google Scholar 

  30. 30.

    Rivas S, Gómez-Oro C, Antón IM, Wandosell F. Role of Akt isoforms controlling cancer stem cell survival, phenotype and self-renewal. Biomedicines. 2018;6:29.

    Article  Google Scholar 

  31. 31.

    Yu F, Yao H, Zhu P, Zhang X, Pan Q, Gong C, et al. let-7 regulates self renewal and tumorigenicity of breast cancer cells. Cell. 2007;131:1109–23.

    CAS  Article  Google Scholar 

  32. 32.

    Wang Y, Zhang X, Li H, Yu J, Ren X. The role of miRNA-29 family in cancer. Eur J cell Biol. 2013;92:123–8.

    CAS  Article  Google Scholar 

  33. 33.

    Mott JL, Kobayashi S, Bronk SF, Gores GJ. mir-29 regulates Mcl-1 protein expression and apoptosis. Oncogene. 2007;26:6133.

    CAS  Article  Google Scholar 

  34. 34.

    Ghobrial IM, Witzig TE, Adjei AA. Targeting apoptosis pathways in cancer therapy. Cancer J Clin. 2005;55:178–94.

    Article  Google Scholar 

  35. 35.

    Hippert MM, O’Toole PS, Thorburn A. Autophagy in cancer: good, bad, or both? Cancer Res. 2006;66:9349–51.

    CAS  Article  Google Scholar 

  36. 36.

    Jeong H, Sung J, Oh S-I, Jeong S, Koh EK, Hong S, et al. Inhibition of brain tumor cell proliferation by alternating electric fields. Appl Phys Lett. 2014;105:203703.

    Article  Google Scholar 

  37. 37.

    Yin J, Oh YT, Kim J-Y, Kim SS, Choi E, Kim TH, et al. Transglutaminase 2 inhibition reverses mesenchymal transdifferentiation of glioma stem cells by regulating C/EBPβ signaling. Cancer Res. 2017;77:4973–84.

    CAS  Article  Google Scholar 

  38. 38.

    Jo Y, Kim E, Sai S, Kim J, Cho J-M, Kim H, et al. Functional Biological Activity of Sorafenib as a Tumor-Treating Field Sensitizer for Glioblastoma Therapy. Int J Mol Sci. 2018;19:3684.

    Article  Google Scholar 

  39. 39.

    Constantinescu CC, Mukherjee J. Performance evaluation of an Inveon PET preclinical scanner. Phys Med Biol. 2009;54:2885–99.

    Article  Google Scholar 

  40. 40.

    Ganapathy B, Nandhagopal N, Polizzotti BD, Bennett D, Asan A, Wu Y, et al. Neuregulin-1 administration protocols sufficient for stimulating cardiac regeneration in young mice do not induce somatic, organ, or neoplastic growth. PLoS ONE. 2016;11:e0155456.

    Article  Google Scholar 

  41. 41.

    Li Y, Wang J, Zhang Z, Yi J, He C, Wang F, et al. Resveratrol compares with melatonin in improving in vitro porcine oocyte maturation under heat stress. J Anim Sci Biotechnol. 2016;7:33.

    Article  Google Scholar 

Download references


This work was supported by a National Research Foundation of Korea (NRF) grant (no. NRF-2017R1D1A1B03028923) and a grant from the Korea Institute of Radiological and Medical Sciences (KIRAMS), which was funded by the Ministry of Science, ICT (MSIP) Republic of Korea (50531-2018, 50538-2019).

Author information



Corresponding authors

Correspondence to Myonggeun Yoon or Sang-Gu Hwang.

Ethics declarations

Ethical Statement

Our study was approved by the Animal Ethics Committee (KUIACUC-2018-73, 1 June 2018).

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kim, E.H., Jo, Y., Sai, S. et al. Tumor-treating fields induce autophagy by blocking the Akt2/miR29b axis in glioblastoma cells. Oncogene 38, 6630–6646 (2019). https://doi.org/10.1038/s41388-019-0882-7

Download citation

Further reading