Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Hsa_circ_101555 functions as a competing endogenous RNA of miR-597-5p to promote colorectal cancer progression

Abstract

CircRNAs have been reported to exert momentous roles in regulating pathophysiological process and guiding clinical diagnosis and treatment in colorectal cancer (CRC). However, there are still a lot of circRNAs that need to be unearthed. In this study, we evaluated the expression profile of circRNAs in 10 CRC tissues and their corresponding normal-appearing tissues (NATs) by microarray, and identified that hsa_circ_101555 (circ101555) was significantly up-regulated in tumor tissues and closely related to the prognosis of CRC patients. A specific close loop structure of circ101555 was described, which was generated by back-splicing of the host gene CSNK1G1 and showed greater stability than the linear RNA. The results in vitro and in vivo showed that silencing circ101555 expression significantly suppressed cell proliferation, induced apoptosis and impaired the DNA repair capacity of CRC cells, while rescue experiments suggested that down-expression of miR-597-5p could significantly attenuate the biological effects of circ101555 knockdown on CRC cells. Subsequent experiments in vitro, including double fluorescence in situ hybridization (D-FISH) analysis, RIP analysis and biotin-coupled probe pull down assay, confirmed that miR-597-5p was effectively enriched by circ101555, and circ101555 might serve as a sponge of miR-597-5p. Moreover, two putative oncogenes (CDK6 and RPA3) were identified as the miR-597-5p potential targets. Taken together, our results proved that circ101555 might function as a competing endogenous RNA of miR-597-5p to up-regulate CDK6 and RPA3 expression in CRC. Circ101555 could be a useful prognostic indicator in patients with CRC, and silence of circ101555 provided a new attractive therapeutic measure for CRC.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2016. CA. 2016;66:7–30.

    Google Scholar 

  2. Wilkins T, McMechan D, Talukder A. Colorectal cancer screening and prevention. Am Fam physician. 2018;97:658–65.

    PubMed  Google Scholar 

  3. Hawk ET, Levin B. Colorectal cancer prevention. J Clin Oncol. 2005;23:378–91.

    Article  Google Scholar 

  4. Pattison AM, Merlino DJ, Blomain ES, Waldman SA. Guanylyl cyclase C signaling axis and colon cancer prevention. World J Gastroenterol. 2016;22:8070–7.

    Article  CAS  Google Scholar 

  5. Haddad FG, Eid R, Kourie HR, Barouky E, Ghosn M. Prognostic and predictive biomarkers in nonmetastatic colorectal cancers. Future Oncol. 2018;14:2097–102.

    Article  CAS  Google Scholar 

  6. Chen LL. The biogenesis and emerging roles of circular RNAs. Nat Rev Mol Cell Biol. 2016;17:205–11.

    Article  CAS  Google Scholar 

  7. Holdt LM, Kohlmaier A, Teupser D. Molecular roles and function of circular RNAs in eukaryotic cells. Cell Mol life Sci. 2018;75:1071–98.

    Article  CAS  Google Scholar 

  8. Chen LL, Yang L. Regulation of circRNA biogenesis. RNA Biol. 2015;12:381–8.

    Article  Google Scholar 

  9. Cocquerelle C, Mascrez B, Hetuin D, Bailleul B. Mis-splicing yields circular RNA molecules. FASEB J. 1993;7:155–60.

    Article  CAS  Google Scholar 

  10. Du WW, Yang W, Liu E, Yang Z, Dhaliwal P, Yang BB. Foxo3 circular RNA retards cell cycle progression via forming ternary complexes with p21 and CDK2. Nucleic Acids Res. 2016;44:2846–58.

    Article  Google Scholar 

  11. Du WW, Yang W, Chen Y, Wu ZK, Foster FS, Yang Z, et al. Foxo3 circular RNA promotes cardiac senescence by modulating multiple factors associated with stress and senescence responses. Eur Heart J. 2017;38:1402–12.

    Article  CAS  Google Scholar 

  12. Hansen TB, Kjems J, Damgaard CK. Circular RNA and miR-7 in cancer. Cancer Res. 2013;73:5609–12.

    Article  CAS  Google Scholar 

  13. Dragomir M, Calin GA. Circular RNAs in cancer - lessons learned from microRNAs. Front Oncol. 2018;8:179.

    Article  Google Scholar 

  14. Zhou R, Wu Y, Wang W, Su W, Liu Y, Wang Y, et al. Circular RNAs (circRNAs) in cancer. Cancer Lett. 2018;425:134–42.

    Article  CAS  Google Scholar 

  15. Yang Q, Du WW, Wu N, Yang W, Awan FM, Fang L, et al. A circular RNA promotes tumorigenesis by inducing c-myc nuclear translocation. Cell Death Differ. 2017;24:1609–20.

    Article  CAS  Google Scholar 

  16. Yao Z, Luo J, Hu K, Lin J, Huang H, Wang Q, et al. ZKSCAN1 gene and its related circular RNA (circZKSCAN1) both inhibit hepatocellular carcinoma cell growth, migration, and invasion but through different signaling pathways. Mol Oncol. 2017;11:422–37.

    Article  CAS  Google Scholar 

  17. Sun S, Li B, Wang Y, Li X, Wang P, Wang F, et al. Clinical significance of the decreased expression of hsa_circ_001242 in oral squamous cell carcinoma. Dis Markers. 2018;2018:6514795.

    PubMed  PubMed Central  Google Scholar 

  18. Li T, Shao Y, Fu L, Xie Y, Zhu L, Sun W, et al. Plasma circular RNA profiling of patients with gastric cancer and their droplet digital RT-PCR detection. J Mol Med. 2018;96:85–96.

    Article  CAS  Google Scholar 

  19. Zeng Y, Xu Y, Shu R, Sun L, Tian Y, Shi C, et al. Altered expression profiles of circular RNA in colorectal cancer tissues from patients with lung metastasis. Int J Mol Med. 2017;40:1818–28.

    Article  CAS  Google Scholar 

  20. Chen S, Zhang L, Su Y, Zhang X. Screening potential biomarkers for colorectal cancer based on circular RNA chips. Oncol Rep. 2018;39:2499–512.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Jiang W, Zhang X, Chu Q, Lu S, Zhou L, Lu X, et al. The circular RNA profiles of colorectal tumor metastatic cells. Front Genet. 2018;9:34.

    Article  Google Scholar 

  22. Yuan Y, Liu W, Zhang Y, Zhang Y, Sun S. CircRNA circ_0026344 as a prognostic biomarker suppresses colorectal cancer progression via microRNA-21 and microRNA-31. Biochem Biophys Res Commun. 2018;503:870–5.

    Article  CAS  Google Scholar 

  23. Esteller M. Non-coding RNAs in human disease. Nat Rev Genet. 2011;12:861–74.

    Article  CAS  Google Scholar 

  24. Qu S, Yang X, Li X, Wang J, Gao Y, Shang R, et al. Circular RNA: a new star of noncoding RNAs. Cancer Lett. 2015;365:141–8.

    Article  CAS  Google Scholar 

  25. Wu J, Jiang Z, Chen C, Hu Q, Fu Z, Chen J, et al. CircIRAK3 sponges miR-3607 to facilitate breast cancer metastasis. Cancer Lett. 2018;430:179–92.

    Article  CAS  Google Scholar 

  26. Yang X, Yuan W, Tao J, Li P, Yang C, Deng X, et al. Identification of circular RNA signature in bladder cancer. J Cancer. 2017;8:3456–63.

    Article  Google Scholar 

  27. Chen G, Shi Y, Zhang Y, Sun J. CircRNA_100782 regulates pancreatic carcinoma proliferation through the IL6-STAT3 pathway. OncoTargets Ther. 2017;10:5783–94.

    Article  Google Scholar 

  28. Xu N, Chen S, Liu Y, Li W, Liu Z, Bian X, et al. Profiles and bioinformatics analysis of differentially expressed circrnas in taxol-resistant non-small cell lung cancer cells. Cell Physiol Biochem. 2018;48:2046–60.

    Article  CAS  Google Scholar 

  29. Wang X, Zhang Y, Huang L, Zhang J, Pan F, Li B, et al. Decreased expression of hsa_circ_001988 in colorectal cancer and its clinical significances. Int J Clin Exp Pathol. 2015;8:16020–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Zhu M, Xu Y, Chen Y, Yan F. Circular BANP, an upregulated circular RNA that modulates cell proliferation in colorectal cancer. Biomed Pharm. 2017;88:138–44.

    Article  CAS  Google Scholar 

  31. Guo JN, Li J, Zhu CL, Feng WT, Shao JX, Wan L, et al. Comprehensive profile of differentially expressed circular RNAs reveals that hsa_circ_0000069 is upregulated and promotes cell proliferation migration, and invasion in colorectal cancer. OncoTargets Ther. 2016;9:7451–8.

    Article  CAS  Google Scholar 

  32. Hsiao KY, Lin YC, Gupta SK, Chang N, Yen L, Sun HS, et al. Noncoding effects of circular RNA CCDC66 promote colon cancer growth and metastasis. Cancer Res. 2017;77:2339–50.

    Article  CAS  Google Scholar 

  33. Zhang R, Xu J, Zhao J, Wang X. Silencing of hsa_circ_0007534 suppresses proliferation and induces apoptosis in colorectal cancer cells. Eur Rev Med Pharmacol Sci. 2018;22:118–26.

    CAS  PubMed  Google Scholar 

  34. Zeng K, Chen X, Xu M, Liu X, Hu X, Xu T, et al. CircHIPK3 promotes colorectal cancer growth and metastasis by sponging miR-7. Cell Death Dis. 2018;9:417.

    Article  Google Scholar 

  35. Xiong DD, Dang YW, Lin P, Wen DY, He RQ, Luo DZ, et al. A circRNA-miRNA-mRNA network identification for exploring underlying pathogenesis and therapy strategy of hepatocellular carcinoma. J Transl Med. 2018;16:220.

    Article  CAS  Google Scholar 

  36. Zhong Y, Du Y, Yang X, Mo Y, Fan C, Xiong F, et al. Circular RNAs function as ceRNAs to regulate and control human cancer progression. Mol Cancer. 2018;17:79.

    Article  Google Scholar 

  37. Chen L, Zhang S, Wu J, Cui J, Zhong L, Zeng L, et al. circRNA_100290 plays a role in oral cancer by functioning as a sponge of the miR-29 family. Oncogene. 2017;36:4551–61.

    Article  CAS  Google Scholar 

  38. Zhang X, Luo P, Jing W, Zhou H, Liang C, Tu J. circSMAD2 inhibits the epithelial-mesenchymal transition by targeting miR-629 in hepatocellular carcinoma. OncoTargets Ther. 2018;11:2853–63.

    Article  Google Scholar 

  39. Zhang XL, Xu LL, Wang F. Hsa_circ_0020397 regulates colorectal cancer cell viability, apoptosis and invasion by promoting the expression of the miR-138 targets TERT and PD-L1. Cell Biol Int. 2017;41:1056–64.

    Article  CAS  Google Scholar 

  40. Pek M, Yatim S, Chen Y, Li J, Gong M, Jiang X, et al. Oncogenic KRAS-associated gene signature defines co-targeting of CDK4/6 and MEK as a viable therapeutic strategy in colorectal cancer. Oncogene. 2017;36:4975–86.

    Article  CAS  Google Scholar 

  41. Sobecki M, Mrouj K, Colinge J, Gerbe F, Jay P, Krasinska L, et al. Cell-cycle regulation accounts for variability in Ki-67 expression levels. Cancer Res. 2017;77:2722–34.

    Article  CAS  Google Scholar 

  42. Dahai Y, Sanyuan S, Hong L, Di Z, Chong Z. A relationship between replication protein A and occurrence and prognosis of esophageal carcinoma. Cell Biochem Biophys. 2013;67:175–80.

    Article  Google Scholar 

  43. Chen CC, Juan CW, Chen KY, Chang YC, Lee JC, Chang MC. Upregulation of RPA2 promotes NF-kappaB activation in breast cancer by relieving the antagonistic function of menin on NF-kappaB-regulated transcription. Carcinogenesis. 2017;38:196–206.

    CAS  PubMed  Google Scholar 

  44. Kanakis D, Levidou G, Gakiopoulou H, Eftichiadis C, Thymara I, Fragkou P, et al. Replication protein A: a reliable biologic marker of prognostic and therapeutic value in human astrocytic tumors. Hum Pathol. 2011;42:1545–53.

    Article  CAS  Google Scholar 

  45. Xiao W, Zheng J, Zhou B, Pan L. Replication protein A 3 is associated with hepatocellular carcinoma tumorigenesis and poor patient survival. Dig Dis. 2018;36:26–32.

    Article  Google Scholar 

  46. Givalos N, Gakiopoulou H, Skliri M, Bousboukea K, Konstantinidou AE, Korkolopoulou P, et al. Replication protein A is an independent prognostic indicator with potential therapeutic implications in colon cancer. Mod Pathol. 2007;20:159–66.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by grants from the Special Subject of Diagnosis Treatment of Key Clinical Diseases of Suzhou City Sci-tech Bureau (LCZX201401), the Project of Invigorating Health Care through Science, Technology and Education, Jiangsu Provincial Medical Youth Talent (QNRC2016723) and Suzhou Gusu Medical Youth Talent (GSWS2019032).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yilin Wang, Wei Li or Qiaoming Zhi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Z., Ren, R., Wan, D. et al. Hsa_circ_101555 functions as a competing endogenous RNA of miR-597-5p to promote colorectal cancer progression. Oncogene 38, 6017–6034 (2019). https://doi.org/10.1038/s41388-019-0857-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-019-0857-8

This article is cited by

Search

Quick links