Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Neratinib inhibits Hippo/YAP signaling, reduces mutant K-RAS expression, and kills pancreatic and blood cancer cells

Abstract

Prior studies demonstrated that the irreversible ERBB1/2/4 inhibitor neratinib caused plasma membrane-associated mutant K-RAS to localize in intracellular vesicles, concomitant with its degradation. Herein, we discovered that neratinib interacted with the chemically distinct irreversible ERBB1/2/4 inhibitor afatinib to reduce expression of ERBB1, ERBB2, K-RAS and N-RAS; this was associated with greater-than-additive cell killing of pancreatic tumor cells. Knock down of Beclin1, ATG16L1, Rubicon or cathepsin B significantly lowered the ability of neratinib to reduce ERBB1 and K-RAS expression, and to cause tumor cell death. Knock down of ATM-AMPK suppressed vesicle formation and knock down of cathepsin B-AIF significantly reduced neratinib lethality. PKG phosphorylates K-RAS and HMG CoA reductase inhibitors reduce K-RAS farnesylation both of which remove K-RAS from the plasma membrane, abolishing its activity. Neratinib interacted with the PKG activator sildenafil and the HMG CoA reductase inhibitor atorvastatin to further reduce K-RAS expression, and to further enhance cell killing. Neratinib is also a Ste20 kinase family inhibitor and in carcinoma cells, and hematopoietic cancer cells lacking ERBB1/2/4, it reduced K-RAS expression and the phosphorylation of MST1/3/4/Ezrin by ~ 30%. Neratinib increased LATS1 phosphorylation as well as that of YAP and TAZ also by ~ 30%, caused the majority of YAP to translocate into the cytosol and reduced YAP/TAZ protein levels. Neratinib lethality was enhanced by knock down of YAP. Neratinib, in a Rubicon-dependent fashion, reduced PAK1 phosphorylation and that of its substrate Merlin. Our data demonstrate that neratinib coordinately suppresses both mutant K-RAS and YAP function to kill pancreatic tumor cells.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Booth L, Roberts JL, Poklepovic A, Avogadri-Connors F, Cutler RE, Lalani AS, et al. HDAC inhibitors enhance neratinib activity and when combined enhance the actions of an anti-PD-1 immunomodulatory antibody in vivo. Oncotarget. 2017;8:90262–77.

    PubMed  PubMed Central  Google Scholar 

  2. Booth L, Roberts JL, Rais R, Cutler RE Jr, Diala I, Lalani AS, et al. Neratinib augments the lethality of [regorafenib + sildenafil]. J Cell Physiol 2019;234:4874–87.

    Article  CAS  Google Scholar 

  3. Booth L, Roberts JL, Rais R, Kirkwood J, Avogadri-Connors F, Cutler RE Jr, et al. [Neratinib + Valproate] exposure permanently reduces ERBB1 and RAS expression in 4T1 mammary tumors and enhances M1 macrophage infiltration. Oncotarget. 2017;9:6062–74.

    PubMed  PubMed Central  Google Scholar 

  4. Booth L, Roberts JL, Sander C, Lalani AS, Kirkwood J, Hancock JF, et al. Neratinib and Entinostat combine to rapidly reduce the expression of K-RAS, N-RAS, Gαq and Gα11 and kill uveal melanoma cells. Cancer Biol Ther. 2018. https://doi.org/10.1080/15384047.2018.1551747.

    Article  Google Scholar 

  5. Cho KJ, Casteel DE, Prakash P, Tan L, van der Hoeven D, Salim AA, et al. AMPK and endothelial nitric oxide synthase signaling regulates k-ras plasma membrane interactions via cyclic GMP-dependent protein kinase 2. Mol Cell Biol. 2016;36:3086–99.

    Article  CAS  Google Scholar 

  6. Abdel-Rahman O. Statin treatment and outcomes of metastatic pancreatic cancer: a pooled analysis of two phase III studies. Clin Transl Oncol. 2018. https://doi.org/10.1007/s12094-018-1992-3.

    Article  Google Scholar 

  7. Archibugi L, Arcidiacono PG, Capurso G. Statin use is associated to a reduced risk of pancreatic cancer: a meta-analysis. Dig Liver Dis 2019;51:28–37.

    Article  CAS  Google Scholar 

  8. Hamada T, Khalaf N, Yuan C, Morales-Oyarvide V, Babic A, Nowak JA, et al. Prediagnosis use of statins associates with increased survival times of patients with pancreatic cancer. Clin Gastroenterol Hepatol. 2018;16:1300–6.

    Article  CAS  Google Scholar 

  9. Jian-Yu E, Graber JM, Lu SE, Lin Y, Lu-Yao G, Tan XL. Effect of metformin and statin use on survival in pancreatic cancer patients: a systematic literature review and meta-analysis. Curr Med Chem 2018;25:2595–607.

    Article  CAS  Google Scholar 

  10. Zhang Y, Liang M, Sun C, Qu G, Shi T, Min M, et al. Statin use and risk of pancreatic cancer: an updated meta-analysis of 26 studies. Pancreas. 2019;48:142–50.

    Article  CAS  Google Scholar 

  11. Chandra A, Grecco HE, Pisupati V, Perera D, Cassidy L, Skoulidis F, et al. The GDI-like solubilizing factor PDEδ sustains the spatial organization and signalling of Ras family proteins. Nat Cell Biol. 2011;14:148–58.

    Article  Google Scholar 

  12. Davis MI, Hunt JP, Herrgard S, Ciceri P, Wodicka LM, Pallares G, et al. Comprehensive analysis of kinase inhibitor selectivity. Nat Biotechnol. 2011;29:1046–51.

    Article  CAS  Google Scholar 

  13. Mohamed AD, Shah N, Hettmer S, Vargesson N, Wackerhage H. Analysis of the relationship between the KRAS G12V oncogene and the Hippo effector YAP1 in embryonal rhabdomyosarcoma. Sci Rep. 2018;8:15674.

    Article  Google Scholar 

  14. Thompson BJ, Sahai E. MST kinases in development and disease. J Cell Biol. 2015;210:871–82.

    Article  CAS  Google Scholar 

  15. Chen S, Fang Y, Xu S, Reis C, Zhang J. Mammalian sterile20-like kinases: signalings and roles in central nervous system. Aging Dis. 2018;9:537–52.

    Article  Google Scholar 

  16. Wang OH, Azizian N, Guo M, Capello M, Deng D, Zang F, et al. Prognostic and Functional Significance of MAP4K5 in Pancreatic Cancer. PLoS ONE. 2016;11:e0152300.

    Article  Google Scholar 

  17. Meng Z, Moroishi T, Mottier-Pavie V, Plouffe SW, Hansen CG, Hong AW, et al. MAP4K family kinases act in parallel to MST1/2 to activate LATS1/2 in the Hippo pathway. Nat Commun. 2015;6:8357.

    Article  CAS  Google Scholar 

  18. Hsu CL, Lee EX, Gordon KL, Paz EA, Shen WC, Ohnishi K, et al. MAP4K3 mediates amino acid-dependent regulation of autophagy via phosphorylation of TFEB. Nat Commun. 2018;9:942.

    Article  Google Scholar 

  19. Singh H, Walker AJ, Amiri-Kordestani L, Cheng J, Tang S, Balcazar P, et al. U.S. Food and Drug Administration approval: neratinib for the extended adjuvant treatment of early-stage her2-positive breast cancer. Clin Cancer Res. 2018;24:3486–91.

    Article  CAS  Google Scholar 

  20. Chen M, Zhang H, Shi Z, Li Y, Zhang X, Gao Z, et al. The MST4-MOB4 complex disrupts the MST1-MOB1 complex in the Hippo-YAP pathway and plays a pro-oncogenic role in pancreatic cancer. J Biol Chem. 2018;293:14455–69.

    Article  CAS  Google Scholar 

  21. Martinez J. LAP it up, fuzz ball: a short history of LC3-associated phagocytosis. Curr Opin Immunol. 2018;55:54–61.

    Article  CAS  Google Scholar 

  22. Lavoie S, Conway KL, Lassen KG, Jijon HB, Pan H, Chun E, et al. The Crohn's disease polymorphism, ATG16L1 T300A, alters the gut microbiota and enhances the local Th1/Th17 response. eLife. 2019;8:e39982.

    Article  Google Scholar 

  23. Wang MH, Okazaki T, Kugathasan S, Cho JH, Isaacs KL, Lewis JD, et al. Contribution of higher risk genes and European admixture to Crohn's disease in African Americans. Inflamm Bowel Dis. 2012;18:2277–87.

    Article  CAS  Google Scholar 

  24. Booth L, Roberts JL, Tavallai M, Webb T, Leon D, Chen J, et al. The afatinib resistance of in vivo generated H1975 lung cancer cell clones is mediated by SRC/ERBB3/c-KIT/c-MET compensatory survival signaling. Oncotarget. 2016;7:19620–30.

    PubMed  PubMed Central  Google Scholar 

  25. Moll HP, Pranz K, Musteanu M, Grabner B, Hruschka N, Mohrherr J, et al. Afatinib restrains K-RAS-driven lung tumorigenesis. Sci Transl Med 2018;10:eaao2301.

    Article  Google Scholar 

  26. Kruspig B, Monteverde T, Neidler S, Hock A, Kerr E, Nixon C, et al. The ERBB network facilitates KRAS-driven lung tumorigenesis. Sci Transl Med 2018;10:eaao2565.

    Article  Google Scholar 

  27. Jang JW, Kim MK, Bae SC. Reciprocal regulation of YAP/TAZ by the Hippo pathway and the Small GTPase pathway. Small GTPases. 2018;20:1–9.

    Article  Google Scholar 

  28. Rawat SJ, Chernoff J. Regulation of mammalian Ste20 (Mst) kinases. Trends Biochem Sci. 2015;40:149–56.

    Article  CAS  Google Scholar 

  29. Bae SJ, Luo X. Activation mechanisms of the Hippo kinase signaling cascade. Biosci Rep. 2018;38:BSR20171469.

    Article  Google Scholar 

  30. Kong D, Zhao Y, Men T, Teng CB. Hippo signaling pathway in liver and pancreas: the potential drug target for tumor therapy. J Drug Target. 2015;23:125–33.

    Article  CAS  Google Scholar 

  31. Patel SH, Camargo FD, Yimlamai D. Hippo signaling in the liver regulates organ size, cell fate, and carcinogenesis. Gastroenterology. 2017;152:533–45.

    Article  CAS  Google Scholar 

  32. Hergovich A. The Roles of NDR protein kinases in hippo signalling. Genes (Basel) 2016;7:E21.

    Article  Google Scholar 

  33. Avruch J, Zhou D, Fitamant J, Bardeesy N, Mou F, Barrufet LR. Protein kinases of the Hippo pathway: regulation and substrates. Semin Cell Dev Biol. 2012;23:770–84.

    Article  CAS  Google Scholar 

  34. Bitra A, Sistla S, Mariam J, Malvi H, Anand R. Rassf proteins as modulators of Mst1 kinase activity. Sci Rep. 2017;7:45020.

    Article  CAS  Google Scholar 

  35. Liu Y, Deng J. Ubiquitination-deubiquitination in the Hippo signaling pathway. Oncol Rep 2019;41:1455–75.

    CAS  PubMed  Google Scholar 

  36. Crawford JJ, Bronner SM, Zbieg JR. Hippo pathway inhibition by blocking the YAP/TAZ-TEAD interface: a patent review. Expert Opin Ther Pat. 2018. https://doi.org/10.1080/13543776.2018.1549226.

    Article  CAS  Google Scholar 

  37. Hergovich A. Regulation and functions of mammalian LATS/NDR kinases: looking beyond canonical Hippo signalling. Cell Biosci. 2013;3:32.

    Article  Google Scholar 

  38. Stegert MR, Hergovich A, Tamaskovic R, Bichsel SJ, Hemmings BA. Regulation of NDR protein kinase by hydrophobic motif phosphorylation mediated by the mammalian Ste20-like kinase MST3. Mol Cell Biol. 2005;25:11019–29.

    Article  CAS  Google Scholar 

  39. Zheng Y, Wang W, Liu B, Deng H, Uster E, Pan D. Identification of Happyhour/MAP4K as Alternative Hpo/Mst-like Kinases in the Hippo Kinase Cascade. Dev Cell. 2015;34:642–55.

    Article  CAS  Google Scholar 

  40. Li S, Cho YS, Yue T, Ip YT, Jiang J. Overlapping functions of the MAP4K family kinases Hppy and Msn in Hippo signaling. Cell Disco. 2015;1:15038.

    Article  CAS  Google Scholar 

  41. Zhang W, Nandakumar N, Shi Y, Manzano M, Smith A, Graham G, et al. Downstream of mutant KRAS, the transcription regulator YAP is essential for neoplastic progression to pancreatic ductal adenocarcinoma. Sci Signal. 2014;7:ra42.

    Article  Google Scholar 

  42. Kapoor A, Yao W, Ying H, Hua S, Liewen A, Wang Q, et al. Yap1 activation enables bypass of oncogenic Kras addiction in pancreatic cancer. Cell 2014;158:185–97.

    Article  CAS  Google Scholar 

  43. Hsu PC, Miao J, Huang Z, Yang YL, Xu Z, You J, et al. Inhibition of yes-associated protein suppresses brain metastasis of human lung adenocarcinoma in a murine model. J Cell Mol Med. 2018;22:3073–85.

    Article  CAS  Google Scholar 

  44. Nussinov R, Tsai CJ, Jang H, Korcsmáros T, Csermely P. Oncogenic KRAS signaling and YAP1/β-catenin: Similar cell cycle control in tumor initiation. Semin Cell Dev Biol. 2016;58:79–85.

    Article  CAS  Google Scholar 

  45. Muniz-Feliciano L, Doggett TA, Zhou Z, Ferguson TA. RUBCN/rubicon and EGFR regulate lysosomal degradative processes in the retinal pigment epithelium (RPE) of the eye. Autophagy. 2017;13:2072–85.

    Article  CAS  Google Scholar 

  46. Sadaghian-Sadabad M, Regeling A, de Goffau MC, Blokzijl T, Weersma RK, Penders J, et al. The ATG16L1-T300A allele impairs clearance of pathosymbionts in the inflamed ileal mucosa of Crohn's disease patients. Gut. 2015;64:1546–52.

    Article  Google Scholar 

  47. Burada F, Ciurea ME, Nicoli R, Streata I, Vilcea ID, Rogoveanu I, et al. ATG16L1 A300 polymorphism is correlated with gastric cancer susceptibility. Pathol Oncol Res. 2016;22:317–22.

    Article  CAS  Google Scholar 

  48. Lassen KG, Kuballa P, Conway KL, Patel KK, Becker CE, Peloquin JM, et al. ATG16L1 T300A variant decreases selective autophagy resulting in altered cytokine signaling and decreased antibacterial defense. Proc Natl Acad Sci USA. 2014;111:7741–6.

    Article  CAS  Google Scholar 

  49. Booth L, Roberts JL, Sander C, Lee J, Kirkwood JM, Poklepovic A, et al. The HDAC inhibitor AR42 interacts with pazopanib to kill trametinib/dabrafenib-resistant melanoma cells in vitro and in vivo. Oncotarget. 2017;8:16367–86.

    PubMed  PubMed Central  Google Scholar 

  50. Waters AM, Ozkan-Dagliyan I, Vaseva AV, Fer N, Strathern LA, Hobbs GA, et al. Evaluation of the selectivity and sensitivity of isoform- and mutation-specific RAS antibodies. Sci Signal. 2017;10:eaao3332.

    Article  Google Scholar 

Download references

Acknowledgements

PD acknowledges funding by the Commonwealth Health Research Board (CHRB) of Virginia. JFH acknowledges funding by CPRIT RP170233.

Funding

Support for the present study was funded from philanthropic funding from Massey Cancer Center and the Universal Inc. Chair in Signal Transduction Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul Dent.

Ethics declarations

Conflict of interest

ASL is a shareholder and paid officer of Puma Biotechnology. The remaining authors declare that they have no conflict of interest.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dent, P., Booth, L., Roberts, J.L. et al. Neratinib inhibits Hippo/YAP signaling, reduces mutant K-RAS expression, and kills pancreatic and blood cancer cells. Oncogene 38, 5890–5904 (2019). https://doi.org/10.1038/s41388-019-0849-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-019-0849-8

This article is cited by

Search

Quick links