Low doses of decitabine improve the chemotherapy efficacy against basal-like bladder cancer by targeting cancer stem cells


Low dose treatment with the DNA methylation inhibitor decitabine has been shown to be applicable for the management of certain types of cancer. However, its antitumor effect and mechanisms are context dependent and its activity has never been systematically studied in bladder cancer treatment. We used mouse models, cultured cell lines and patient-derived xenografts to demonstrate that low dose decitabine treatment remarkably enhanced the effects of cisplatin and gemcitabine on basal-like bladder cancer both in vivo and in vitro. Genetic lineage tracing revealed that the stemness of a bladder cancer stem cell population was inhibited by decitabine treatment in mice. These effects were accompanied by decreases in genome-wide DNA methylation, gene re-expression, and changes in key cellular regulatory pathways such as STAT3 signaling. These results indicate that this DNA-demethylating reagent is a promising therapeutic approach for basal-like bladder cancer treatment.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Data availability

The authors declare that all relevant data are available within the article and its Supplementary information files or from the corresponding author upon reasonable request. The MEDIP-sequencing and RNA-sequencing datasets have been submitted to the NCBI database under the accession number GSE113537 and SRP148541.


  1. 1.

    Torre LA, Bray F, Siegel RL, Ferlay J, Lortet-Tieulent J, Jemal A. Global cancer statistics, 2012. CA Cancer J Clin. 2015;65:87–108.

    Article  Google Scholar 

  2. 2.

    Siegel RL, Miller KD, Jemal A. Cancer statistics, 2016. CA Cancer J Clin. 2016;66:7–30.

    Article  Google Scholar 

  3. 3.

    Babjuk M, Burger M, Zigeuner R, Shariat SF, van Rhijn BW, Comperat E, et al. EAU guidelines on non-muscle-invasive urothelial carcinoma of the bladder: update 2013. Eur Urol. 2013;64:639–53.

    Article  Google Scholar 

  4. 4.

    Anastasiadis A, de Reijke TM. Best practice in the treatment of nonmuscle invasive bladder cancer. Ther Adv Urol. 2012;4:13–32.

    Article  Google Scholar 

  5. 5.

    Shah JB, McConkey DJ, Dinney CP. New strategies in muscle-invasive bladder cancer: on the road to personalized medicine. Clin Cancer Res. 2011;17:2608–12.

    Article  Google Scholar 

  6. 6.

    Choi W, Porten S, Kim S, Willis D, Plimack ER, Hoffman-Censits J, et al. Identification of distinct basal and luminal subtypes of muscle-invasive bladder cancer with different sensitivities to frontline chemotherapy. Cancer Cell. 2014;25:152–65.

    CAS  Article  Google Scholar 

  7. 7.

    Cancer Genome Atlas Research N. Comprehensive molecular characterization of urothelial bladder carcinoma. Nature. 2014;507:315–22.

    Article  Google Scholar 

  8. 8.

    Felsenstein KM, Theodorescu D. Precision medicine for urothelial bladder cancer: update on tumour genomics and immunotherapy. Nat Rev Urol. 2018;15:92–111.

    CAS  Article  Google Scholar 

  9. 9.

    Ribas A, Tumeh PC. The future of cancer therapy: selecting patients likely to respond to PD1/L1 blockade. Clin Cancer Res. 2014;20:4982–4.

    CAS  Article  Google Scholar 

  10. 10.

    von der Maase H, Sengelov L, Roberts JT, Ricci S, Dogliotti L, Oliver T, et al. Long-term survival results of a randomized trial comparing gemcitabine plus cisplatin, with methotrexate, vinblastine, doxorubicin, plus cisplatin in patients with bladder cancer. J Clin Oncol: Off J Am Soc Clin Oncol. 2005;23:4602–8.

    Article  Google Scholar 

  11. 11.

    Sonpavde G, Gordetsky JB, Lockhart ME, Nix JW. Chemotherapy for Muscle-Invasive Bladder Cancer: Better Late Than Never? J Clin Oncol. 2016;34:780–5.

    CAS  Article  Google Scholar 

  12. 12.

    Oing C, Rink M, Oechsle K, Seidel C, von Amsberg G, Bokemeyer C. Second line chemotherapy for advanced and metastatic urothelial carcinoma: vinflunine and beyond—a comprehensive review of the current literature. J Urol. 2016;195:254–63.

    CAS  Article  Google Scholar 

  13. 13.

    Chan KS, Espinosa I, Chao M, Wong D, Ailles L, Diehn M, et al. Identification, molecular characterization, clinical prognosis, and therapeutic targeting of human bladder tumor-initiating cells. Proc Natl Acad Sci USA. 2009;106:14016–21.

    CAS  Article  Google Scholar 

  14. 14.

    Van Batavia J, Yamany T, Molotkov A, Dan H, Mansukhani M, Batourina E, et al. Bladder cancers arise from distinct urothelial sub-populations. Nat Cell Biol. 2014;16:982–91. 981–5

    Article  Google Scholar 

  15. 15.

    Papafotiou G, Paraskevopoulou V, Vasilaki E, Kanaki Z, Paschalidis N, Klinakis A. KRT14 marks a subpopulation of bladder basal cells with pivotal role in regeneration and tumorigenesis. Nat Commun. 2016;7:11914.

    CAS  Article  Google Scholar 

  16. 16.

    Zhu F, Qian W, Zhang H, Liang Y, Wu M, Zhang Y, et al. SOX2 is a marker for stem-like tumor cells in bladder cancer. Stem Cell Rep. 2017;9:429–37.

    CAS  Article  Google Scholar 

  17. 17.

    Licht JD. DNA methylation inhibitors in cancer therapy: the immunity dimension. Cell. 2015;162:938–9.

    CAS  Article  Google Scholar 

  18. 18.

    Timp W, Feinberg AP. Cancer as a dysregulated epigenome allowing cellular growth advantage at the expense of the host. Nat Rev Cancer. 2013;13:497–510.

    CAS  Article  Google Scholar 

  19. 19.

    Blum W, Klisovic RB, Hackanson B, Liu Z, Liu S, Devine H, et al. Phase I study of decitabine alone or in combination with valproic acid in acute myeloid leukemia. J Clin Oncol. 2007;25:3884–91.

    CAS  Article  Google Scholar 

  20. 20.

    Cashen AF, Schiller GJ, O’Donnell MR, DiPersio JFMulticenter. phase II study of decitabine for the first-line treatment of older patients with acute myeloid leukemia. J Clin Oncol. 2010;28:556–61.

    CAS  Article  Google Scholar 

  21. 21.

    Issa JP, Garcia-Manero G, Giles FJ, Mannari R, Thomas D, Faderl S, et al. Phase 1 study of low-dose prolonged exposure schedules of the hypomethylating agent 5-aza-2’-deoxycytidine (decitabine) in hematopoietic malignancies. Blood. 2004;103:1635–40.

    CAS  Article  Google Scholar 

  22. 22.

    Tsai HC, Li H, Van Neste L, Cai Y, Robert C, Rassool FV, et al. Transient low doses of DNA-demethylating agents exert durable antitumor effects on hematological and epithelial tumor cells. Cancer Cell. 2012;21:430–46.

    CAS  Article  Google Scholar 

  23. 23.

    Schulz WA, Goering W. DNA methylation in urothelial carcinoma. Epigenomics. 2016;8:1415–28.

    CAS  Article  Google Scholar 

  24. 24.

    Kandimalla R, van Tilborg AA, Zwarthoff EC. DNA methylation-based biomarkers in bladder cancer. Nat Rev Urol. 2013;10:327–35.

    CAS  Article  Google Scholar 

  25. 25.

    Peng D, Ge G, Xu Z, Ma Q, Shi Y, Zhou Y, et al. Diagnostic and prognostic biomarkers of common urological cancers based on aberrant DNA methylation. Epigenomics. 2018;10:1189–99.

    CAS  Article  Google Scholar 

  26. 26.

    Williams PD, Lee JK, Theodorescu D. Molecular credentialing of rodent bladder carcinogenesis models. Neoplasia. 2008;10:838–46.

    CAS  Article  Google Scholar 

  27. 27.

    Liang Y, Zhu F, Zhang H, Chen D, Zhang X, Gao Q, et al. Conditional ablation of TGF-beta signaling inhibits tumor progression and invasion in an induced mouse bladder cancer model. Sci Rep. 2016;6:29479.

    CAS  Article  Google Scholar 

  28. 28.

    Kurtova AV, Xiao J, Mo Q, Pazhanisamy S, Krasnow R, Lerner SP, et al. Blocking PGE2-induced tumour repopulation abrogates bladder cancer chemoresistance. Nature. 2015;517:209–13.

    CAS  Article  Google Scholar 

  29. 29.

    Volkmer JP, Sahoo D, Chin RK, Ho PL, Tang C, Kurtova AV, et al. Three differentiation states risk-stratify bladder cancer into distinct subtypes. Proc Natl Acad Sci USA. 2012;109:2078–83.

    CAS  Article  Google Scholar 

  30. 30.

    Ho PL, Kurtova A, Chan KS. Normal and neoplastic urothelial stem cells: getting to the root of the problem. Nat Rev Urol. 2012;9:583–94.

    CAS  Article  Google Scholar 

  31. 31.

    Beck B, Blanpain C. Unravelling cancer stem cell potential. Nat Rev Cancer. 2013;13:727–38.

    CAS  Article  Google Scholar 

  32. 32.

    Ho PL, Lay EJ, Jian W, Parra D, Chan KS. Stat3 activation in urothelial stem cells leads to direct progression to invasive bladder cancer. Cancer Res. 2012;72:3135–42.

    CAS  Article  Google Scholar 

  33. 33.

    Zhao D, Pan C, Sun J, Gilbert C, Drews-Elger K, Azzam DJ, et al. VEGF drives cancer-initiating stem cells through VEGFR-2/Stat3 signaling to upregulate Myc and Sox2. Oncogene. 2015;34:3107–19.

    CAS  Article  Google Scholar 

  34. 34.

    Momparler RL. Pharmacology of 5-Aza-2’-deoxycytidine (decitabine). Semin Hematol. 2005;42:S9–16.

    CAS  Article  Google Scholar 

  35. 35.

    Malik P, Cashen AF. Decitabine in the treatment of acute myeloid leukemia in elderly patients. Cancer Manag Res. 2014;6:53–61.

    PubMed  PubMed Central  Google Scholar 

  36. 36.

    Juergens RA, Wrangle J, Vendetti FP, Murphy SC, Zhao M, Coleman B, et al. Combination epigenetic therapy has efficacy in patients with refractory advanced non-small cell lung cancer. Cancer Discov. 2011;1:598–607.

    CAS  Article  Google Scholar 

  37. 37.

    Fu X, Zhang Y, Wang X, Chen M, Wang Y, Nie J, et al. Low dose decitabine combined with taxol and platinum chemotherapy to treat refractory/recurrent ovarian cancer: an open-label, single-arm, phase I/II study. Curr Protein & Pept Sci. 2015;16:329–36.

    CAS  Article  Google Scholar 

  38. 38.

    Li L, Zhang X, Yu H, Zhang M, Xu M, Liu J, et al. Low-dose hypomethylating agent decitabine in combination with aclacinomycin and cytarabine achieves a better outcome than standard FLAG chemotherapy in refractory/relapsed acute myeloid leukemia patients with poor-risk cytogenetics and mutations. Onco Targets Ther. 2018;11:6863–70.

    Article  Google Scholar 

  39. 39.

    Chen M, Nie J, Liu Y, Li X, Zhang Y, Brock MV, et al. Phase Ib/II study of safety and efficacy of low-dose decitabine-primed chemoimmunotherapy in patients with drug-resistant relapsed/refractory alimentary tract cancer. Int J Cancer. 2018;143:1530–40.

    CAS  Article  Google Scholar 

  40. 40.

    Yu G, Wu Y, Wang W, Xu J, Lv X, Cao X et al. Low-dose decitabine enhances the effect of PD-1 blockade in colorectal cancer with microsatellite stability by re-modulating the tumor microenvironment. Cell Mol Immunol. 2018. https://doi.org/10.1038/s41423-018-0026-y.

    Article  Google Scholar 

  41. 41.

    Shang D, Liu Y, Matsui Y, Ito N, Nishiyama H, Kamoto T, et al. Demethylating agent 5-aza-2’-deoxycytidine enhances susceptibility of bladder transitional cell carcinoma to Cisplatin. Urology. 2008;71:1220–5.

    Article  Google Scholar 

  42. 42.

    Xylinas E, Hassler MR, Zhuang D, Krzywinski M, Erdem Z, Robinson BD, et al. An epigenomic approach to improving response to neoadjuvant cisplatin chemotherapy in bladder cancer. Biomolecules. 2016;6:E37. pii

    Article  Google Scholar 

  43. 43.

    Khandelwal M, Anand V, Appunni S, Seth A, Singh P, Mathur S, et al. Decitabine augments cytotoxicity of cisplatin and doxorubicin to bladder cancer cells by activating hippo pathway through RASSF1A. Mol Cell Biochem. 2018;446:105–14.

    CAS  Article  Google Scholar 

  44. 44.

    O’Flaherty JD, Barr M, Fennell D, Richard D, Reynolds J, O’Leary J, et al. The cancer stem-cell hypothesis: its emerging role in lung cancer biology and its relevance for future therapy. J Thorac Oncol: Off Publ Int Assoc Study Lung Cancer. 2012;7:1880–90.

    Article  Google Scholar 

  45. 45.

    Becci PJ, Thompson HJ, Grubbs CJ, Squire RA, Brown CC, Sporn MB, et al. Inhibitory effect of 13-cis-retinoic acid on urinary bladder carcinogenesis induced in C57BL/6 mice by N-butyl-N-(4-hydroxybutyl)-nitrosamine. Cancer Res. 1978;38:4463–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  46. 46.

    Rebouissou S, Bernard-Pierrot I, de Reynies A, Lepage ML, Krucker C, Chapeaublanc E, et al. EGFR as a potential therapeutic target for a subset of muscle-invasive bladder cancers presenting a basal-like phenotype. Sci Transl Med. 2014;6:244ra291.

    Article  Google Scholar 

  47. 47.

    Saito R, Smith CC, Utsumi T, Bixby LM, Kardos J, Wobker SE, et al. Molecular subtype-specific immunocompetent models of high-grade urothelial carcinoma reveal differential neoantigen expression and response to immunotherapy. Cancer Res. 2018;78:3954–68.

    CAS  Article  Google Scholar 

  48. 48.

    Paner GP, Annaiah C, Gulmann C, Rao P, Ro JY, Hansel DE, et al. Immunohistochemical evaluation of novel and traditional markers associated with urothelial differentiation in a spectrum of variants of urothelial carcinoma of the urinary bladder. Hum Pathol. 2014;45:1473–82.

    CAS  Article  Google Scholar 

  49. 49.

    Huang HY, Shariat SF, Sun TT, Lepor H, Shapiro E, Hsieh JT, et al. Persistent uroplakin expression in advanced urothelial carcinomas: implications in urothelial tumor progression and clinical outcome. Hum Pathol. 2007;38:1703–13.

    CAS  Article  Google Scholar 

  50. 50.

    Su Y, Qiu Q, Zhang X, Jiang Z, Leng Q, Liu Z. et al. Aldehyde dehydrogenase 1 A1-positive cell population is enriched in tumor-initiating cells and associated with progression of bladder cancer. Cancer Epidemiol Biomarkers Prev. 2010;19:327–37.

    CAS  Article  Google Scholar 

  51. 51.

    Yang YM, Chang JW. Bladder cancer initiating cells (BCICs) are among EMA-CD44v6+subset: novel methods for isolating undetermined cancer stem (initiating) cells. Cancer Invest. 2008;26:725–33.

    CAS  Article  Google Scholar 

  52. 52.

    Ferguson AT, Vertino PM, Spitzner JR, Baylin SB, Muller MT, Davidson NE. Role of estrogen receptor gene demethylation and DNA methyltransferase.DNA adduct formation in 5-aza-2’deoxycytidine-induced cytotoxicity in human breast cancer cells. J Biol Chem. 1997;272:32260–6.

    CAS  Article  Google Scholar 

  53. 53.

    Ghoshal K, Datta J, Majumder S, Bai S, Kutay H, Motiwala T, et al. 5-Aza-deoxycytidine induces selective degradation of DNA methyltransferase 1 by a proteasomal pathway that requires the KEN box, bromo-adjacent homology domain, and nuclear localization signal. Mol Cell Biol. 2005;25:4727–41.

    CAS  Article  Google Scholar 

  54. 54.

    Flotho C, Claus R, Batz C, Schneider M, Sandrock I, Ihde S, et al. The DNA methyltransferase inhibitors azacitidine, decitabine and zebularine exert differential effects on cancer gene expression in acute myeloid leukemia cells. Leukemia. 2009;23:1019–28.

    CAS  Article  Google Scholar 

  55. 55.

    Oz S, Raddatz G, Rius M, Blagitko-Dorfs N, Lubbert M, Maercker C, et al. Quantitative determination of decitabine incorporation into DNA and its effect on mutation rates in human cancer cells. Nucleic Acids Res. 2014;42:e152.

    Article  Google Scholar 

  56. 56.

    Hagemann S, Heil O, Lyko F, Brueckner B. Azacytidine and decitabine induce gene-specific and non-random DNA demethylation in human cancer cell lines. PLoS ONE. 2011;6:e17388.

    CAS  Article  Google Scholar 

  57. 57.

    Yan P, Frankhouser D, Murphy M, Tam HH, Rodriguez B, Curfman J, et al. Genome-wide methylation profiling in decitabine-treated patients with acute myeloid leukemia. Blood. 2012;120:2466–74.

    CAS  Article  Google Scholar 

  58. 58.

    Alcazar O, Achberger S, Aldrich W, Hu Z, Negrotto S, Saunthararajah Y, et al. Epigenetic regulation by decitabine of melanoma differentiation in vitro and in vivo. Int J Cancer. 2012;131:18–29.

    CAS  Article  Google Scholar 

  59. 59.

    Triozzi PL, Aldrich W, Achberger S, Ponnazhagan S, Alcazar O, Saunthararajah Y. Differential effects of low-dose decitabine on immune effector and suppressor responses in melanoma-bearing mice. Cancer Immunol, Immunother: CII. 2012;61:1441–50.

    CAS  Article  Google Scholar 

  60. 60.

    Li X, Zhang Y, Chen M, Mei Q, Liu Y, Feng K, et al. Increased IFNγ+ T cells are responsible for the clinical responses of low-dose dna-demethylating agent decitabine antitumor therapy. Clin Cancer Res. 2017;23:6031–43.

    CAS  Article  Google Scholar 

  61. 61.

    Pei M, Chen D, Li J, Wei L. Histone deacetylase 4 promotes TGF-beta1-induced synovium-derived stem cell chondrogenesis but inhibits chondrogenically differentiated stem cell hypertrophy. Differ; Res Biol Divers. 2009;78:260–8.

    CAS  Article  Google Scholar 

  62. 62.

    Li Y, Deng H, Lv L, Zhang C, Qian L, Xiao J, et al. The miR-193a-3p-regulated ING5 gene activates the DNA damage response pathway and inhibits multi-chemoresistance in bladder cancer. Oncotarget. 2015;6:10195–206.

    PubMed  PubMed Central  Google Scholar 

  63. 63.

    Lv L, Deng H, Li Y, Zhang C, Liu X, Liu Q, et al. The DNA methylation-regulated miR-193a-3p dictates the multi-chemoresistance of bladder cancer via repression of SRSF2/PLAU/HIC2 expression. Cell death & Dis. 2014;5:e1402.

    CAS  Article  Google Scholar 

  64. 64.

    Deng W, Wang Y, Liu Z, Cheng H, Xue Y. HemI: a toolkit for illustrating heatmaps. PLoS ONE. 2014;9:e111988.

    Article  Google Scholar 

  65. 65.

    Kahn SL, Ronnett BM, Gravitt PE, Gustafson KS. Quantitative methylation-specific PCR for the detection of aberrant DNA methylation in liquid-based Pap tests. Cancer. 2008;114:57–64.

    CAS  Article  Google Scholar 

  66. 66.

    Li Y, Yu Y, Zhang Y, Zhou Y, Li C, Zhu J, et al. MAFIP is a tumor suppressor in cervical cancer that inhibits activation of the nuclear factor-kappa B pathway. Cancer Sci. 2011;102:2043–50.

    CAS  Article  Google Scholar 

Download references


This work was supported by the National Natural Science Foundation of China (81872313 and 81672776 to YL, 31501838 to XHZ).

Author information




YL, DC, and JL conceived ideas and experimental design. MW, MC, HZ, FZ, YZ, Yu Liang, and XZ performed the experiments. LS and HZ. provided clinical samples and aided in immunohistochemical analysis, YJ and SL helped with mouse strains and manuscript preparation, ZL and QG helped analyse data and figures. YL and DC wrote the manuscript.

Corresponding authors

Correspondence to Demeng Chen or Jiong Li or Yang Li.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wu, M., Sheng, L., Cheng, M. et al. Low doses of decitabine improve the chemotherapy efficacy against basal-like bladder cancer by targeting cancer stem cells. Oncogene 38, 5425–5439 (2019). https://doi.org/10.1038/s41388-019-0799-1

Download citation

Further reading