Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

MYB regulates the DNA damage response and components of the homology-directed repair pathway in human estrogen receptor-positive breast cancer cells

Abstract

Over 70% of human breast cancers are estrogen receptor-positive (ER+), most of which express MYB. In these and other cell types, the MYB transcription factor regulates the expression of many genes involved in cell proliferation, differentiation, tumorigenesis, and apoptosis. So far, no clear link has been established between MYB and the DNA damage response in breast cancer. Here, we found that silencing MYB in the ER+ breast cancer cell line MCF-7 led to increased DNA damage accumulation, as marked by increased γ-H2AX foci following induction of double-stranded breaks. We further found that this was likely mediated by decreased homologous recombination-mediated repair (HRR), since silencing MYB impaired the formation of RAD51 foci in response to DNA damage. Moreover, cells depleted for MYB exhibited reduced expression of several key genes involved in HRR including BRCA1, PALB2, and TOPBP1. Taken together, these data imply that MYB and its targets play an important role in the response of ER+ breast cancer cells to DNA damage, and suggest that induction of DNA damage along with inhibition of MYB activity could offer therapeutic benefits for ER+ breast cancer and possibly other cancer types.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Ramsay RG, Gonda TJ. MYB function in normal and cancer cells. Nat Rev Cancer. 2008;8:523–34.

    Article  CAS  Google Scholar 

  2. Ganter B, Lipsick JS. Myb and oncogenesis. Adv Cancer Res. 1999;76:21–60.

    Article  CAS  Google Scholar 

  3. Ramsay RG, Thompson MA, Hayman JA, Reid G, Gonda TJ, Whitehead RH. Myb expression is higher in malignant human colonic carcinoma and premalignant adenomatous polyps than in normal mucosa. Cell Growth Differ. 1992;3:723–30.

    CAS  PubMed  Google Scholar 

  4. Torelli G, Venturelli D, Colo A, Zanni C, Selleri L, Moretti L, et al. Expression of c-myb protooncogene and other cell cycle-related genes in normal and neoplastic human colonic mucosa. Cancer Res. 1987;47:5266–9.

    CAS  PubMed  Google Scholar 

  5. Persson M, Andren Y, Mark J, Horlings HM, Persson F, Stenman G. Recurrent fusion of MYB and NFIB transcription factor genes in carcinomas of the breast and head and neck. Proc Natl Acad Sci USA. 2009;106:18740–4.

    Article  CAS  Google Scholar 

  6. Bell D, Roberts D, Karpowicz M, Hanna EY, Weber RS, El-Naggar AK. Clinical significance of Myb protein and downstream target genes in salivary adenoid cystic carcinoma. Cancer Biol Ther. 2011;12:569–73.

    Article  CAS  Google Scholar 

  7. Guerin M, Barrois M, Riou G. The expression of c-myb is strongly associated with the presence of estrogen and progesterone receptors in breast cancer. C R Acad Sci III. 1988;307:855–61.

    CAS  PubMed  Google Scholar 

  8. Guerin M, Sheng ZM, Andrieu N, Riou G. Strong association between c-myb and oestrogen-receptor expression in human breast cancer. Oncogene. 1990;5:131–5.

    CAS  PubMed  Google Scholar 

  9. Drabsch Y, Hugo H, Zhang R, Dowhan DH, Miao YR, Gewirtz AM. et al. Mechanism of and requirement for estrogen-regulated MYB expression in estrogen-receptor-positive breast cancer cells. Proc Natl Acad Sci USA. 2007;104:13762–67.

    Article  CAS  Google Scholar 

  10. Drabsch Y, Ramsay RG, Gonda TJ. MYB suppresses differentiation and apoptosis of human breast cancer cells. Breast Cancer Res. 2010;12:R55.

  11. Miao RY, Drabsch Y, Cross RS, Cheasley D, Carpinteri S, Pereira L, et al. MYB is essential for mammary tumorigenesis. Cancer Res. 2011;71:7029–37.

    Article  CAS  Google Scholar 

  12. Foulkes WD, Metcalfe K, Sun P, Hanna WM, Lynch HT, Ghadirian P, et al. Estrogen receptor status in BRCA1- and BRCA2-related breast cancer: the influence of age, grade, and histological type. Clin Cancer Res. 2004;10:2029–34.

    Article  CAS  Google Scholar 

  13. Sanford RA, Song J, Gutierrez-Barrera AM, Profato J, Woodson A, Litton JK, et al. High incidence of germline BRCA mutation in patients with ER low-positive/PR low-positive/HER-2 neu negative tumors. Cancer. 2015;121:3422–7.

    Article  CAS  Google Scholar 

  14. Vinayak S, Ford JM. PARP inhibitors for the treatment and prevention of breast cancer. Curr Breast Cancer Rep. 2010;2:190–7.

    Article  CAS  Google Scholar 

  15. Jin W, Liu Y, Chen L, Zhu H, Di GH, Ling H, et al. Involvement of MyoD and c-myb in regulation of basal and estrogen-induced transcription activity of the BRCA1 gene. Breast Cancer Res Treat. 2011;125:699–713.

    Article  CAS  Google Scholar 

  16. Li L, Chang W, Yang G, Ren C, Park S, Karantanos T, et al. Targeting poly(ADP-ribose) polymerase and the c-Myb-regulated DNA damage response pathway in castration-resistant prostate cancer. Sci Signal. 2014;7:ra47.

    Article  Google Scholar 

  17. Quintana AM, Liu F, O’Rourke JP, Ness SA. Identification and regulation of c-Myb target genes in MCF-7 cells. BMC Cancer. 2011;11:30.

    Article  CAS  Google Scholar 

  18. Wang W, Wu S, Shi Y, Miao Y, Luo X, Ji M, et al. c-MYB regulates cell growth and DNA damage repair through modulating MiR-143. FEBS Lett. 2015;589:555–64.

    Article  CAS  Google Scholar 

  19. Mitra P, Yang RM, Sutton J, Ramsay RG, Gonda TJ. CDK9 inhibitors selectively target estrogen receptor-positive breast cancer cells through combined inhibition of MYB and MCL-1 expression. Oncotarget. 2016;7:9069–83.

    PubMed  PubMed Central  Google Scholar 

  20. Nitiss JL. Targeting DNA topoisomerase II in cancer chemotherapy. Nat Rev Cancer. 2009;9:338–50.

    Article  CAS  Google Scholar 

  21. Rogakou EP, Pilch DR, Orr AH, Ivanova VS, Bonner WM. DNA double-stranded breaks induce histone H2AX phosphorylation on serine 139. J Biol Chem. 1998;273:5858–68.

    Article  CAS  Google Scholar 

  22. Rogakou EP, Boon C, Redon C, Bonner WM. Megabase chromatin domains involved in DNA double-strand breaks in vivo. J Cell Biol. 1999;146:905–16.

    Article  CAS  Google Scholar 

  23. Banath JP, Klokov D, MacPhail SH, Banuelos CA, Olive PL. Residual gammaH2AX foci as an indication of lethal DNA lesions. BMC Cancer. 2010;10:4.

    Article  Google Scholar 

  24. Zeidler M, Varambally S, Cao Q, Chinnaiyan AM, Ferguson DO, Merajver SD, et al. The Polycomb group protein EZH2 impairs DNA repair in breast epithelial cells. Neoplasia. 2005;7:1011–9.

    Article  CAS  Google Scholar 

  25. Gildemeister OS, Sage JM, Knight KL. Cellular redistribution of Rad51 in response to DNA damage: novel role for Rad51C. J Biol Chem. 2009;284:31945–52.

    Article  CAS  Google Scholar 

  26. Raderschall E, Golub EI, Haaf T. Nuclear foci of mammalian recombination proteins are located at single-stranded DNA regions formed after DNA damage. Proc Natl Acad Sci USA. 1999;96:1921–6.

    Article  CAS  Google Scholar 

  27. Drier Y, Cotton MJ, Williamson KE, Gillespie SM, Ryan RJ, Kluk MJ, et al. An oncogenic MYB feedback loop drives alternate cell fates in adenoid cystic carcinoma. Nat Genet. 2016;48:265–72.

    Article  CAS  Google Scholar 

  28. Cousineau I, Abaji C, Belmaaza A. BRCA1 regulates RAD51 function in response to DNA damage and suppresses spontaneous sister chromatid replication slippage: implications for sister chromatid cohesion, genome stability, and carcinogenesis. Cancer Res. 2005;65:11384–91.

    Article  CAS  Google Scholar 

  29. Tarsounas M, Davies D, West SC. BRCA2-dependent and independent formation of RAD51 nuclear foci. Oncogene. 2003;22:1115–23.

    Article  CAS  Google Scholar 

  30. Moudry P, Watanabe K, Wolanin KM, Bartkova J, Wassing IE, Watanabe S, et al. TOPBP1 regulates RAD51 phosphorylation and chromatin loading and determines PARP inhibitor sensitivity. J Cell Biol. 2016;212:281–8.

    Article  CAS  Google Scholar 

  31. Paull TT, Rogakou EP, Yamazaki V, Kirchgessner CU, Gellert M, Bonner WM. A critical role for histone H2AX in recruitment of repair factors to nuclear foci after DNA damage. Curr Biol. 2000;10:886–95.

    Article  CAS  Google Scholar 

  32. Lord CJ, Ashworth A. RAD51, BRCA2 and DNA repair: a partial resolution. Nat Struct Mol Biol. 2007;14:461–2.

    Article  CAS  Google Scholar 

  33. Sy SM, Huen MS, Chen J. PALB2 is an integral component of the BRCA complex required for homologous recombination repair. Proc Natl Acad Sci USA. 2009;106:7155–60.

    Article  CAS  Google Scholar 

  34. Buisson R, Dion-Cote AM, Coulombe Y, Launay H, Cai H, Stasiak AZ, et al. Cooperation of breast cancer proteins PALB2 and piccolo BRCA2 in stimulating homologous recombination. Nat Struct Mol Biol. 2010;17:1247–54.

    Article  CAS  Google Scholar 

  35. Dray E, Etchin J, Wiese C, Saro D, Williams GJ, Hammel M, et al. Enhancement of RAD51 recombinase activity by the tumor suppressor PALB2. Nat Struct Mol Biol. 2010;17:1255–9.

    Article  CAS  Google Scholar 

  36. Harte MT, Gorski JJ, Savage KI, Purcell JW, Barros EM, Burn PM, et al. NF-kappaB is a critical mediator of BRCA1-induced chemoresistance. Oncogene. 2014;33:713–23.

    Article  CAS  Google Scholar 

  37. Shin SY, Kim CG, Lee YH. Egr-1 regulates the transcription of the BRCA1 gene by etoposide. BMB Rep. 2013;46:92–96.

    Article  CAS  Google Scholar 

  38. Liu S, Opiyo SO, Manthey K, Glanzer JG, Ashley AK, Amerin C, et al. Distinct roles for DNA-PK, ATM and ATR in RPA phosphorylation and checkpoint activation in response to replication stress. Nucleic Acids Res. 2012;40:10780–94.

    Article  CAS  Google Scholar 

  39. Helleday T, Lo J, van Gent DC, Engelward BP. DNA double-strand break repair: from mechanistic understanding to cancer treatment. DNA Repair (Amst). 2007;6:923–35.

    Article  CAS  Google Scholar 

  40. Krejci L, Altmannova V, Spirek M, Zhao X. Homologous recombination and its regulation. Nucleic Acids Res. 2012;40:5795–818.

    Article  CAS  Google Scholar 

  41. Ward A, Khanna KK, Wiegmans AP. Targeting homologous recombination, new pre-clinical and clinical therapeutic combinations inhibiting RAD51. Cancer Treat Rev. 2015;41:35–45.

    Article  CAS  Google Scholar 

  42. Rugo HS, Vidula N, Ma C. Improving Response to Hormone Therapy in Breast Cancer: New Targets, New Therapeutic Options. Am Soc Clin Oncol Educ Book. 2016;35:e40–54.

    Article  Google Scholar 

  43. Cheung-Ong K, Giaever G, Nislow C. DNA-damaging agents in cancer chemotherapy: serendipity and chemical biology. Chem Biol. 2013;20:648–59.

    Article  CAS  Google Scholar 

  44. Gonda TJ, Ramsay RG. Directly targeting transcriptional dysregulation in cancer. Nat Rev Cancer. 2015;15:686–94.

    Article  CAS  Google Scholar 

  45. Pattabiraman DR, Gonda TJ. Role and potential for therapeutic targeting of MYB in leukemia. Leukemia. 2013;27:269–77.

    Article  CAS  Google Scholar 

  46. Uttarkar S, Frampton J, Klempnauer KH. Targeting the transcription factor Myb by small-molecule inhibitors. Exp Hematol. 2017;47:31–35.

    Article  CAS  Google Scholar 

  47. Uttarkar S, Dasse E, Coulibaly A, Steinmann S, Jakobs A, Schomburg C, et al. Targeting acute myeloid leukemia with a small molecule inhibitor of the Myb/p300 interaction. Blood. 2016;127:1173–82.

    Article  CAS  Google Scholar 

  48. Pattabiraman DR, McGirr C, Shakhbazov K, Barbier V, Krishnan K, Mukhopadhyay P, et al. Interaction of c-Myb with p300 is required for the induction of acute myeloid leukemia (AML) by human AML oncogenes. Blood. 2014;123:2682–90.

    Article  CAS  Google Scholar 

  49. Mitra P, Pereira LA, Drabsch Y, Ramsay RG, Gonda TJ. Estrogen receptor-alpha recruits P-TEFb to overcome transcriptional pausing in intron 1 of the MYB gene. Nucleic Acids Res. 2012;40:5988–6000.

    Article  CAS  Google Scholar 

  50. Cross RS, Malaterre J, Davenport AJ, Carpinteri S, Anderson RL, Darcy PK, et al. Therapeutic DNA vaccination against colorectal cancer by targeting the MYB oncoprotein. Clin Transl Immunol. 2015;4:e30.

    Article  Google Scholar 

  51. Ramsay RG, Ishii S, Nishina Y, Soe G, Gonda TJ. Characterization of alternate and truncated forms of murine c-myb proteins. Oncogene Res. 1989;4:259–69.

    CAS  PubMed  Google Scholar 

  52. Mitchell AS, Smith IC, Gamu D, Donath S, Tupling AR, Quadrilatero J. Functional, morphological, and apoptotic alterations in skeletal muscle of ARC deficient mice. Apoptosis. 2015;20:310–26.

    Article  CAS  Google Scholar 

  53. Rossi DJ, Bryder D, Seita J, Nussenzweig A, Hoeijmakers J, Weissman IL. Deficiencies in DNA damage repair limit the function of haematopoietic stem cells with age. Nature. 2007;447:725–9.

    Article  CAS  Google Scholar 

  54. Haaf T, Golub EI, Reddy G, Radding CM, Ward DC. Nuclear foci of mammalian Rad51 recombination protein in somatic cells after DNA damage and its localization in synaptonemal complexes. Proc Natl Acad Sci USA. 1995;92:2298–302.

    Article  CAS  Google Scholar 

  55. Tsuchiya M, Nakajima Y, Waku T, Hiyoshi H, Morishita T, Furumai R, et al. CHIP buffers heterogeneous Bcl-2 expression levels to prevent augmentation of anticancer drug-resistant cell population. Oncogene. 2015;34:4656–63.

    Article  CAS  Google Scholar 

  56. Abmayr SM, Yao T, Parmely T, Workman JL. Preparation of nuclear and cytoplasmic extracts from mammalian cells. Curr Protoc Pharmacol. 2006; Chapter 12: Unit12 13.

Download references

Acknowledgments

We would like to thank members of the Gonda laboratory for helpful discussions. RMY was the recipient of an International Postgraduate Research Scholarship (Australia) and a University of Queensland Centennial Scholarship. ED was supported by a National Breast Cancer Foundation Early Career Fellowship. KKK is a Senior Principal Research Fellow of the National Health and Medical Research Council (Australia). The Translational Research Institute is supported by an Australian government grant.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Eloise Dray or Thomas J. Gonda.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, RM., Nanayakkara, D., Kalimutho, M. et al. MYB regulates the DNA damage response and components of the homology-directed repair pathway in human estrogen receptor-positive breast cancer cells. Oncogene 38, 5239–5249 (2019). https://doi.org/10.1038/s41388-019-0789-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-019-0789-3

Search

Quick links