Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Non-murine models to investigate tumor-immune interactions in head and neck cancer

Abstract

The immune response has important roles in the biology of solid tumors, including oncogenesis, tumor growth, invasion and metastasis, and response to treatment. Improved understanding of tumor-immune system interactions has provided promising therapeutic options that are based on the rescue and enhancement of the anti-tumoral host response. Immune-based treatments have been approved for clinical use in various types of cancer, including head and neck cancer (HNC); other strategies involving combination therapies are currently in development. These novel therapies were developed based on knowledge derived from in vitro, in silico, and in vivo pre-clinical studies. However, clinical trials seldom replicate the efficacy observed in pre-clinical animal studies. This lack of correlation between pre-clinical studies and clinical trials may be related to limitations of the models used; which highlights the relevance of considering immune-related aspects of different pre-clinical models. Murine models are the most frequently used pre-clinical models of HNC and are discussed elsewhere. Non-murine models have characteristics that offer unique opportunities for the study of HNC etiology, therapeutic strategies, and tumor-immune system interactions. The current review focuses on immune-related aspects of non-murine models, including dog, cat, pig, zebrafish, and frog, that could be used to investigate tumor-immune interactions in HNC.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1

Similar content being viewed by others

References

  1. References that are followed by an asterisk (*) in the manuscript (text and table) can be found in the appendix.

  2. Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144:646–74

    Article  CAS  Google Scholar 

  3. Popovic A, Jaffee EM, Zaidi N. Emerging strategies for combination checkpoint modulators in cancer immunotherapy. J Clin Invest. 2018;128:3209–18

    PubMed  Google Scholar 

  4. Ferris RL. Immunology and immunotherapy of head and neck cancer. J Clin Oncol. 2015;33:3293–304

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Alves AM, Diel LF, Lamers ML. Macrophages and prognosis of oral squamous cell carcinoma: a systematic review. J Oral Pathol Med. 2018;47:460–7.

    PubMed  Google Scholar 

  6. Gooden MJ, de Bock GH, Leffers N, Daemen T, Nijman HW. The prognostic influence of tumour-infiltrating lymphocytes in cancer: a systematic review with meta-analysis. Br J Cancer. 2011;105:93–103

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Hanna GJ, Liu H, Jones RE, Bacay AF, Lizotte PH, Ivanova EV, et al. Defining an inflamed tumor immunophenotype in recurrent, metastatic squamous cell carcinoma of the head and neck. Oral Oncol. 2017;67:61–69

    CAS  PubMed  Google Scholar 

  8. de Ruiter EJ, Ooft ML, Devriese LA, Willems SM. The prognostic role of tumor infiltrating T-lymphocytes in squamous cell carcinoma of the head and neck: a systematic review and meta-analysis. Oncoimmunology. 2017;6:e1356148

    PubMed  PubMed Central  Google Scholar 

  9. Ferris RL, Blumenschein G, Jr. Fayette J, Guigay J, Colevas AD, et al. Nivolumab vs investigator’s choice in recurrent or metastatic squamous cell carcinoma of the head and neck: 2-year long-term survival update of CheckMate 141 with analyses by tumor PD-L1 expression. Oral Oncol. 2018;81:45–51

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Iwai Y, Ishida M, Tanaka Y, Okazaki T, Honjo T, Minato N. Involvement of PD-L1 on tumor cells in the escape from host immune system and tumor immunotherapy by PD-L1 blockade. Proc Natl Acad Sci USA. 2002;99:12293–7

    CAS  PubMed  Google Scholar 

  11. Hirano F, Kaneko K, Tamura H, Dong H, Wang S, Ichikawa M, et al. Blockade of B7-H1 and PD-1 by monoclonal antibodies potentiates cancer therapeutic immunity. Cancer Res. 2005;65:1089–96

    CAS  PubMed  Google Scholar 

  12. Zhang C, Wu S, Xue X, Li M, Qin X, Li W, et al. Anti-tumor immunotherapy by blockade of the PD-1/PD-L1 pathway with recombinant human PD-1-IgV. Cytotherapy. 2008;10:711–9

    CAS  PubMed  Google Scholar 

  13. Rossa C Jr., D’Silva NJ. Immune-relevant aspects of murine models of head and neck cancer. Oncogene. 2019. https://doi.org/10.1038/s41388-019-0686-9. [Epub ahead of print]. PMID: 30696955

    CAS  PubMed  Google Scholar 

  14. Supsavhad W, Dirksen WP, Martin CK, Rosol TJ. Animal models of head and neck squamous cell carcinoma. Vet J. 2016;210:7–16

    PubMed  Google Scholar 

  15. Lindblad-Toh K, Wade CM, Mikkelsen TS, Karlsson EK, Jaffe DB, Kamal M, et al. Genome sequence, comparative analysis and haplotype structure of the domestic dog. Nature. 2005;438:803–19

    CAS  PubMed  Google Scholar 

  16. Montague MJ, Li G, Gandolfi B, Khan R, Aken BL, Searle SM, et al. Comparative analysis of the domestic cat genome reveals genetic signatures underlying feline biology and domestication. Proc Natl Acad Sci USA. 2014;111:17230–5

    CAS  PubMed  Google Scholar 

  17. Wypij JM. A naturally occurring feline model of head and neck squamous cell carcinoma. Pathol Res Int. 2013;2013:502197

    Google Scholar 

  18. Khanna C, Lindblad-Toh K, Vail D, London C, Bergman P, Barber L, et al. The dog as a cancer model. Nat Biotechnol. 2006;24:1065–6

    CAS  PubMed  Google Scholar 

  19. Kamb A. What’s wrong with our cancer models? Nat Rev Drug Discov. 2005;4:161–5

    CAS  PubMed  Google Scholar 

  20. Stebbins KE, Morse CC, Goldschmidt MH. Feline oral neoplasia: a ten-year survey. Vet Pathol. 1989;26:121–8

    CAS  PubMed  Google Scholar 

  21. Shield KD, Ferlay J, Jemal A, Sankaranarayanan R, Chaturvedi AK, Bray F, et al. The global incidence of lip, oral cavity, and pharyngeal cancers by subsite in 2012. Cancer J Clin. 2017;67:51–64

    Google Scholar 

  22. Martin CK, Tannehill-Gregg SH, Wolfe TD, Rosol TJ. Bone-invasive oral squamous cell carcinoma in cats: pathology and expression of parathyroid hormone-related protein. Vet Pathol. 2011;48:302–12

    CAS  PubMed  Google Scholar 

  23. Cannon CM. Cats, cancer and comparative oncology. Vet Sci. 2015;2:111–26

    PubMed  PubMed Central  Google Scholar 

  24. Bergkvist GT, Argyle DJ, Morrison L, MacIntyre N, Hayes A, Yool DA. Expression of epidermal growth factor receptor (EGFR) and Ki67 in feline oral squamous cell carcinomas (FOSCC). Vet Comp Oncol. 2011;9:106–17

    CAS  PubMed  Google Scholar 

  25. Wakshlag JJ, Peters-Kennedy J, Bushey JJ, Loftus JP. 5-lipoxygenase expression and tepoxalin-induced cell death in squamous cell carcinomas in cats. Am J Vet Res. 2011;72:1369–77

    CAS  PubMed  Google Scholar 

  26. Snyder LA, Bertone ER, Jakowski RM, Dooner MS, Jennings-Ritchie J, Moore AS. p53 expression and environmental tobacco smoke exposure in feline oral squamous cell carcinoma. Vet Pathol. 2004;41:209–14

    CAS  PubMed  Google Scholar 

  27. Yoshikawa H, Ehrhart EJ, Charles JB, Thamm DH, Larue SM. Immunohistochemical characterization of feline oral squamous cell carcinoma. Am J Vet Res. 2012;73:1801–6

    CAS  PubMed  Google Scholar 

  28. Munday JS, Knight CG, French AF. Evaluation of feline oral squamous cell carcinomas for p16CDKN2A protein immunoreactivity and the presence of papillomaviral DNA. Res Vet Sci. 2011;90:280–3

    CAS  PubMed  Google Scholar 

  29. Soltero-Rivera MM, Krick EL, Reiter AM, Brown DC, Lewis JR. Prevalence of regional and distant metastasis in cats with advanced oral squamous cell carcinoma: 49 cases (2005–11). J Feline Med Surg. 2014;16:164–9

    PubMed  Google Scholar 

  30. Rathore K, Alexander M, Cekanova M. Piroxicam inhibits Masitinib-induced cyclooxygenase 2 expression in oral squamous cell carcinoma cells in vitro. Transl Res. 2014;164:158–68

    CAS  PubMed  Google Scholar 

  31. Klobukowska HJ, Munday JS. High numbers of stromal cancer-associated fibroblasts are associated with a shorter survival time in cats with oral squamous cell carcinoma. Vet Pathol. 2016;53:1124–30

    CAS  PubMed  Google Scholar 

  32. Supsavhad W, Dirksen WP, Hildreth BE, Rosol TJ. p16, pRb, and p53 in feline oral squamous cell carcinoma. Vet Sci. 2016;3. pii: E18. https://doi.org/10.3390/vetsci3030018. PMID: 29056726

    PubMed Central  Google Scholar 

  33. Harley R, Gruffydd-Jones TJ, Day MJ. Immunohistochemical characterization of oral mucosal lesions in cats with chronic gingivostomatitis. J Comp Pathol. 2011;144:239–50

    CAS  PubMed  Google Scholar 

  34. Yuhki N, Beck T, Stephens R, Neelam B, O’Brien SJ. Comparative genomic structure of human, dog, and cat MHC: HLA, DLA, and FLA. J Hered. 2007;98:390–9

    CAS  PubMed  Google Scholar 

  35. Day MJ. Cats are not small dogs: is there an immunological explanation for why cats are less affected by arthropod-borne disease than dogs? Parasit Vectors. 2016;9:507

    PubMed  PubMed Central  Google Scholar 

  36. Wiles V, Hohenhaus A, Lamb K, Zaidi B, Camps-Palau M, Leibman N. Retrospective evaluation of toceranib phosphate (Palladia) in cats with oral squamous cell carcinoma. J Feline Med Surg. 2017;19:185–93

    PubMed  Google Scholar 

  37. Hayes A, Scase T, Miller J, Murphy S, Sparkes A, Adams V. COX-1 and COX-2 expression in feline oral squamous cell carcinoma. J Comp Pathol. 2006;135:93–99

    CAS  PubMed  Google Scholar 

  38. Hassan BB, Elshafae SM, Supsavhad W, Simmons JK, Dirksen WP, Sokkar SM, et al. Feline mammary cancer. Vet Pathol. 2017;54:32–43

    CAS  PubMed  Google Scholar 

  39. Mas A, Blackwood L, Cripps P, Murphy S, De Vos J, Dervisis N, et al. Canine tonsillar squamous cell carcinoma—a multi-centre retrospective review of 44 clinical cases. J Small Anim Pract. 2011;52:359–64

    CAS  PubMed  Google Scholar 

  40. Fulton AJ, Nemec A, Murphy BG, Kass PH, Verstraete FJ. Risk factors associated with survival in dogs with nontonsillar oral squamous cell carcinoma 31 cases (1990–2010). J Am Vet Med Assoc. 2013;243:696–702

    PubMed  Google Scholar 

  41. Day MJ, Schultz RD. Veterinary immunology: principles and practice. 2nd ed. Boca Raton, London, New York: CRC Press; 2014

  42. Bergeron LM, McCandless EE, Dunham S, Dunkle B, Zhu Y, Shelly J, et al. Comparative functional characterization of canine IgG subclasses. Vet Immunol Immunopathol. 2014;157:31–41

    CAS  PubMed  Google Scholar 

  43. Strietzel CJ, Bergeron LM, Oliphant T, Mutchler VT, Choromanski LJ, Bainbridge G. In vitro functional characterization of feline IgGs. Vet Immunol Immunopathol. 2014;158:214–23

    CAS  PubMed  Google Scholar 

  44. Leroy G, Verrier E, Meriaux JC, Rognon X. Genetic diversity of dog breeds: between-breed diversity, breed assignation and conservation approaches. Anim Genet. 2009;40:333–43

    CAS  PubMed  Google Scholar 

  45. Dobson JM. Breed-predispositions to cancer in pedigree dogs. ISRN Vet Sci. 2013;2013:941275

    PubMed  PubMed Central  Google Scholar 

  46. Todoroff RJ, Brodey RS. Oral and pharyngeal neoplasia in the dog: a retrospective survey of 361 cases. J Am Vet Med Assoc. 1979;175:567–71

    CAS  PubMed  Google Scholar 

  47. Mestrinho LA, Pissarra H, Carvalho S, Peleteiro MC, Gawor J, Niza M. Comparison of histological and proliferation features of canine oral squamous cell carcinoma based on intraoral location: 36 cases. J Vet Dent. 2017;34:92–99

    PubMed  Google Scholar 

  48. Liu D, Xiong H, Ellis AE, Northrup NC, Dobbin KK, Shin DM, et al. Canine spontaneous head and neck squamous cell carcinomas represent their human counterparts at the molecular level. PLoS Genet. 2015;11:e1005277

    PubMed  PubMed Central  Google Scholar 

  49. Agrawal N, Frederick MJ, Pickering CR, Bettegowda C, Chang K, Li RJ, et al. Exome sequencing of head and neck squamous cell carcinoma reveals inactivating mutations in NOTCH1. Science. 2011;333:1154–7

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Stransky N, Egloff AM, Tward AD, Kostic AD, Cibulskis K, Sivachenko A, et al. The mutational landscape of head and neck squamous cell carcinoma. Science. 2011;333:1157–60

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Mochizuki H, Breen M. Sequence analysis of RAS and RAF mutation hot spots in canine carcinoma. Vet Comp Oncol. 2017;15:1598–605

    CAS  PubMed  Google Scholar 

  52. Martano M, Restucci B, Ceccarelli DM, Lo Muzio L, Maiolino P. Immunohistochemical expression of vascular endothelial growth factor in canine oral squamous cell carcinomas. Oncol Lett. 2016;11:399–404

    CAS  PubMed  Google Scholar 

  53. Pestili de Almeida EM, Piche C, Sirois J, Dore M. Expression of cyclo-oxygenase-2 in naturally occurring squamous cell carcinomas in dogs. J Histochem Cytochem. 2001;49:867–75

    CAS  PubMed  Google Scholar 

  54. Munday JS, French A, Harvey CJ. Molecular and immunohistochemical studies do not support a role for papillomaviruses in canine oral squamous cell carcinoma development. Vet J. 2015;204:223–5

    CAS  PubMed  Google Scholar 

  55. Miyazawa J, Mitoro A, Kawashiri S, Chada KK, Imai K. Expression of mesenchyme-specific gene HMGA2 in squamous cell carcinomas of the oral cavity. Cancer Res. 2004;64:2024–9

    CAS  PubMed  Google Scholar 

  56. Sterenczak KA, Eckardt A, Kampmann A, Willenbrock S, Eberle N, Langer F, et al. HMGA1 and HMGA2 expression and comparative analyses of HMGA2, Lin28 and let-7 miRNAs in oral squamous cell carcinoma. BMC Cancer. 2014;14:694

    PubMed  PubMed Central  Google Scholar 

  57. Nemec A, Murphy B, Kass PH, Verstraete FJ. Histological subtypes of oral non-tonsillar squamous cell carcinoma in dogs. J Comp Pathol. 2012;147:111–20

    CAS  PubMed  Google Scholar 

  58. Rothschild MF, Ruvinsky A, C.A.B. International. The genetics of the pig. 2nd ed. Wallingford, Oxfordshire: CABI; 2011

  59. Walters EM, Prather RS. Advancing swine models for human health and diseases. Mo Med. 2013;110:212–5

    PubMed  PubMed Central  Google Scholar 

  60. Schook LB, Collares TV, Darfour-Oduro KA, De AK, Rund LA, Schachtschneider KM, et al. Unraveling the swine genome: implications for human health. Annu Rev Anim Biosci. 2015;3:219–44

    CAS  PubMed  Google Scholar 

  61. Mair KH, Sedlak C, Kaser T, Pasternak A, Levast B, Gerner W, et al. The porcine innate immune system: an update. Dev Comp Immunol. 2014;45:321–43

    CAS  PubMed  Google Scholar 

  62. De Pelsmaeker S, Devriendt B, Leclercq G, Favoreel HW. Porcine NK cells display features associated with antigen-presenting cells. J Leukoc Biol. 2018;103:129–40

    PubMed  Google Scholar 

  63. Sinkora M, Butler JE. The ontogeny of the porcine immune system. Dev Comp Immunol. 2009;33:273–83

    CAS  PubMed  Google Scholar 

  64. Rothkotter HJ. Anatomical particularities of the porcine immune system—a physician’s view. Dev Comp Immunol. 2009;33:267–72

    PubMed  Google Scholar 

  65. Lunney JK, Ho CS, Wysocki M, Smith DM. Molecular genetics of the swine major histocompatibility complex, the SLA complex. Dev Comp Immunol. 2009;33:362–74.

    CAS  PubMed  Google Scholar 

  66. McAnulty PA. The minipig in biomedical research. Boca Raton: CRC Press/Taylor & Francis; 2012. http://ezproxy.msu.edu/login?url=http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=411945

  67. Meurens F, Summerfield A, Nauwynck H, Saif L, Gerdts V. The pig: a model for human infectious diseases. Trends Microbiol. 2012;20:50–57

    CAS  PubMed  Google Scholar 

  68. Groenen MA, Archibald AL, Uenishi H, Tuggle CK, Takeuchi Y, Rothschild MF, et al. Analyses of pig genomes provide insight into porcine demography and evolution. Nature. 2012;491:393–8

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Bordignon V, El-Beirouthi N, Gasperin BG, Albornoz MS, Martinez-Diaz MA, Schneider C, et al. Production of cloned pigs with targeted attenuation of gene expression. PLoS One. 2013;8:e64613

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Lillico SG, Proudfoot C, Carlson DF, Stverakova D, Neil C, Blain C, et al. Live pigs produced from genome edited zygotes. Sci Rep. 2013;3:2847

    PubMed  PubMed Central  Google Scholar 

  71. Watson AL, Carlson DF, Largaespada DA, Hackett PB, Fahrenkrug SC. Engineered swine models of cancer. Front Genet. 2016;7:78.

    PubMed  PubMed Central  Google Scholar 

  72. Adam SJ, Rund LA, Kuzmuk KN, Zachary JF, Schook LB, Counter CM. Genetic induction of tumorigenesis in swine. Oncogene. 2007;26:1038–45

    CAS  PubMed  Google Scholar 

  73. Yamakawa H, Nagai T, Harasawa R, Yamagami T, Takahashi J, Ishikawa K-i, et al. Production of Transgenic Pig Carrying MMTV/v-Ha-ras. J Reprod Dev. 1999;45:111–8

    CAS  Google Scholar 

  74. Sinn E, Muller W, Pattengale P, Tepler I, Wallace R, Leder P. Coexpression of MMTV/v-Ha-ras and MMTV/c-myc genes in transgenic mice: synergistic action of oncogenes in vivo. Cell. 1987;49:465–75

    CAS  PubMed  Google Scholar 

  75. Borovansky J, Horak V, Elleder M, Fortyn K, Smit NP, Kolb AM. Biochemical characterization of a new melanoma model—the minipig MeLiM strain. Melanoma Res. 2003;13:543–8

    PubMed  Google Scholar 

  76. Li X, Zhou X, Guan Y, Wang YX, Scutt D, Gong QY. N-nitrosodiethylamine-induced pig liver hepatocellular carcinoma model: radiological and histopathological studies. Cardiovasc Interv Radiol. 2006;29:420–8

    Google Scholar 

  77. Sieren JC, Meyerholz DK, Wang XJ, Davis BT, Newell JD Jr., Hammond E, et al. Development and translational imaging of a TP53 porcine tumorigenesis model. J Clin Invest. 2014;124:4052–66

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Li S, Edlinger M, Saalfrank A, Flisikowski K, Tschukes A, Kurome M, et al. Viable pigs with a conditionally-activated oncogenic KRAS mutation. Transgenic Res. 2015;24:509–17

    CAS  PubMed  Google Scholar 

  79. Schook LB, Collares TV, Hu W, Liang Y, Rodrigues FM, Rund LA, et al. A genetic porcine model of cancer. PLoS One. 2015;10:e0128864

    PubMed  PubMed Central  Google Scholar 

  80. Schachtschneider KM, Liu Y, Makelainen S, Madsen O, Rund LA, Groenen MAM, et al. Oncopig soft-tissue sarcomas recapitulate key transcriptional features of human sarcomas. Sci Rep. 2017;7:2624

    PubMed  PubMed Central  Google Scholar 

  81. Schachtschneider KM, Schwind RM, Darfour-Oduro KA, De AK, Rund LA, Singh K, et al. A validated, transitional and translational porcine model of hepatocellular carcinoma. Oncotarget. 2017;8:63620–34

    PubMed  PubMed Central  Google Scholar 

  82. Callesen MM, Arnadottir SS, Lyskjaer I, Orntoft MW, Hoyer S, Dagnaes-Hansen F, et al. A genetically inducible porcine model of intestinal cancer. Mol Oncol. 2017;11:1616–29

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Suzuki S, Iwamoto M, Saito Y, Fuchimoto D, Sembon S, Suzuki M, et al. Il2rg gene-targeted severe combined immunodeficiency pigs. Cell Stem Cell. 2012;10:753–8

    CAS  PubMed  Google Scholar 

  84. Ito T, Sendai Y, Yamazaki S, Seki-Soma M, Hirose K, Watanabe M, et al. Generation of recombination activating gene-1-deficient neonatal piglets: a model of T and B cell deficient severe combined immune deficiency. PLoS One. 2014;9:e113833

    PubMed  PubMed Central  Google Scholar 

  85. Huang J, Guo X, Fan N, Song J, Zhao B, Ouyang Z, et al. RAG1/2 knockout pigs with severe combined immunodeficiency. J Immunol. 2014;193:1496–503

    CAS  PubMed  Google Scholar 

  86. Suzuki S, Iwamoto M, Hashimoto M, Suzuki M, Nakai M, Fuchimoto D, et al. Generation and characterization of RAG2 knockout pigs as animal model for severe combined immunodeficiency. Vet Immunol Immunopathol. 2016;178:37–49

    CAS  PubMed  Google Scholar 

  87. Karo JM, Schatz DG, Sun JC. The RAG recombinase dictates functional heterogeneity and cellular fitness in natural killer cells. Cell. 2014;159:94–107

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Lei S, Ryu J, Wen K, Twitchell E, Bui T, Ramesh A, et al. Increased and prolonged human norovirus infection in RAG2/IL2RG deficient gnotobiotic pigs with severe combined immunodeficiency. Sci Rep. 2016;6:25222

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Choi YJ, Kim E, Reza A, Hong K, Song H, Park C, et al. Recombination activating gene-2(null) severe combined immunodeficient pigs and mice engraft human induced pluripotent stem cells differently. Oncotarget. 2017;8:69398–407

    PubMed  PubMed Central  Google Scholar 

  90. Khoshnevis M, Carozzo C, Bonnefont-Rebeix C, Belluco S, Leveneur O, Chuzel T, et al. Development of induced glioblastoma by implantation of a human xenograft in Yucatan minipig as a large animal model. J Neurosci Methods. 2017;282:61–68

    PubMed  Google Scholar 

  91. Reymond MA, Tannapfel A, Schneider C, Scheidbach H, Kover S, Jung A, et al. Description of an intraperitoneal tumour xenograft survival model in the pig. Eur J Surg Oncol. 2000;26:393–7

    CAS  PubMed  Google Scholar 

  92. Arnold CR, Kloss F, Singh S, Vasiljevic D, Stigler R, Auberger T, et al. A domestic porcine model for studying the effects of radiation on head and neck cancers. Oral Surg Oral Med Oral Pathol Oral Radiol. 2017;123:536–43

    PubMed  Google Scholar 

  93. Stramandinoli-Zanicotti RT, Sassi LM, Schussel JL, Torres MF, Funchal M, Smaniotto GH, et al. Effect of fractionated radiotherapy on the parotid gland: an experimental study in Brazilian minipigs. Int Arch Otorhinolaryngol. 2013;17:163–7

    PubMed  PubMed Central  Google Scholar 

  94. Sanz R, Calpena AC, Mallandrich M, Gimeno A, Halbaut L, Clares B. Development of a buccal doxepin platform for pain in oral mucositis derived from head and neck cancer treatment. Eur J Pharm Biopharm. 2017;117:203–11

    CAS  PubMed  Google Scholar 

  95. Hu L, Wang Y, Cotrim AP, Zhu Z, Gao R, Zheng C, et al. Effect of Tempol on the prevention of irradiation-induced mucositis in miniature pigs. Oral Dis. 2017;23:801–8

    CAS  PubMed  Google Scholar 

  96. Curry JM, Bloedon E, Malloy KM, Cognetti DM, Merton DA, Goldberg BB, et al. Ultrasound-guided contrast-enhanced sentinel node biopsy of the head and neck in a porcine model. Otolaryngol Head Neck Surg. 2007;137:735–41

    PubMed  Google Scholar 

  97. Seoane J, Varela-Centelles P, Esparza-Gomez G, Cerero-Lapiedra R, Seoane-Romero JM, Diz P. Simulation for training in oral cancer biopsy: a surgical model and feedback from GDPs. Med Oral Patol Oral Cir Bucal. 2013;18:e246–250

    PubMed  PubMed Central  Google Scholar 

  98. Howe K, Clark MD, Torroja CF, Torrance J, Berthelot C, Muffato M, et al. The zebrafish reference genome sequence and its relationship to the human genome. Nature. 2013;496:498–503

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Lam SH, Chua HL, Gong Z, Lam TJ, Sin YM. Development and maturation of the immune system in zebrafish, Danio rerio: a gene expression profiling, in situ hybridization and immunological study. Dev Comp Immunol. 2004;28:9–28

    CAS  Google Scholar 

  100. Li Y, Li Y, Cao X, Jin X, Jin T. Pattern recognition receptors in zebrafish provide functional and evolutionary insight into innate immune signaling pathways. Cell Mol Immunol. 2017;14:80–89

    CAS  PubMed  Google Scholar 

  101. Lieschke GJ, Oates AC, Crowhurst MO, Ward AC, Layton JE. Morphologic and functional characterization of granulocytes and macrophages in embryonic and adult zebrafish. Blood. 2001;98:3087–96

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from NIH/NIDCR DE027551 (NJD), DE022567 (NJD), FAPESP 2017/14283–5 (CRJ), and University of Michigan and FAPESP 2014/50312–4 (NJD and CRJ)

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Carlos Rossa Jr or Nisha J. D’Silva.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rossa, C., D’Silva, N.J. Non-murine models to investigate tumor-immune interactions in head and neck cancer. Oncogene 38, 4902–4914 (2019). https://doi.org/10.1038/s41388-019-0776-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-019-0776-8

This article is cited by

Search

Quick links