Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

α-Parvin promotes breast cancer progression and metastasis through interaction with G3BP2 and regulation of TWIST1 signaling

Abstract

Identification of molecular alterations driving breast cancer progression is critical for the development of effective therapy. In this study, we show that the level of α-parvin is elevated in triple-negative breast cancer cells. The depletion of α-parvin from triple-negative breast cancer cells effectively inhibits breast cancer cell growth, migration, and invasion in vitro, and tumor progression and metastasis in vivo. At the molecular level, we identify Ras-GTPase-activing protein SH3-domain-binding protein 2 (G3BP2) as an α-parvin-binding protein. Knockdown of α-parvin promotes G3BP2 interaction with TWIST1, increases ubiquitination and proteasome-dependent degradation of TWIST1, and consequently reduces the cellular level of TWIST1 and its downstream signaling. Importantly, the depletion of G3BP2 reverses the reduction in the level and signaling of TWIST1 and the suppression of breast cancer progression induced by the loss of α-parvin. Furthermore, the re-expression of an α-parvin mutant in which the G3BP2-binding site is ablated, unlike that of wild-type α-parvin, in α-parvin-deficient breast cancer cells, is unable to restore the level and signaling of TWIST1 and promote breast cancer progression. Finally, we show that protein level of α-parvin is highly positively correlated with that of TWIST1 in human triple-negative breast cancer patients. Our studies reveal a novel signaling pathway consisting of α-parvin, G3BP2, and TWIST1 that regulates breast cancer progression and metastasis, and suggest that the activation of this signaling pathway is a key factor for driving the progression and poor clinical outcome of human ER-negative breast cancer.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Jin X, Mu P. Targeting breast cancer metastasis. Breast Cancer (Auckl). 2015;9:23–34.

    Google Scholar 

  2. Chiang AC, Massague J. Molecular basis of metastasis. N Engl J Med. 2008;359:2814–23.

    Article  CAS  Google Scholar 

  3. Valastyan S, Weinberg RA. Tumor metastasis: molecular insights and evolving paradigms. Cell. 2011;147:275–92.

    Article  CAS  Google Scholar 

  4. Lambert AW, Pattabiraman DR, Weinberg RA. Emerging biological principles of metastasis. Cell. 2017;168:670–91.

    Article  CAS  Google Scholar 

  5. Stetler-Stevenson WG, Aznavoorian S, Liotta LA. Tumor cell interactions with the extracellular matrix during invasion and metastasis. Annu Rev Cell Biol. 1993;9:541–73.

    Article  CAS  Google Scholar 

  6. Nikolopoulos SN, Turner CE. Actopaxin, a new focal adhesion protein that binds paxillin LD motifs and actin and regulates cell adhesion. J Cell Biol. 2000;151:1435–48.

    Article  CAS  Google Scholar 

  7. Zhang Y, Chen K, Tu Y, Velyvis A, Yang Y, Qin J, et al. Assembly of the PINCH-ILK-CH-ILKBP complex precedes and is essential for localization of each component to cell-matrix adhesion sites. J Cell Sci. 2002;115:4777–86.

    Article  CAS  Google Scholar 

  8. Wu C. The PINCH-ILK-parvin complexes: assembly, functions and regulation. Biochim Biophys Acta. 2004;1692:55–62.

    Article  CAS  Google Scholar 

  9. Legate KR, Montanez E, Kudlacek O, Fassler R. ILK, PINCH and parvin: the tIPP of integrin signalling. Nat Rev Mol Cell Biol. 2006;7:20–31.

    Article  CAS  Google Scholar 

  10. Tu Y, Huang Y, Zhang Y, Hua Y, Wu C. A new focal adhesion protein that interacts with integrin-linked kinase and regulates cell adhesion and spreading. J Cell Biol. 2001;153:585–98.

    Article  CAS  Google Scholar 

  11. Olski TM, Noegel AA, Korenbaum E. Parvin, a 42 kDa focal adhesion protein, related to the alpha-actinin superfamily. J Cell Sci. 2001;114:525–38.

    CAS  PubMed  Google Scholar 

  12. Zhang Y, Chen K, Tu Y, Wu C. Distinct roles of two structurally closely related focal adhesion proteins, alpha-parvins and beta-parvins, in regulation of cell morphology and survival. J Biol Chem. 2004;279:41695–705.

    Article  CAS  Google Scholar 

  13. Pignatelli J, LaLonde SE, LaLonde DP, Clarke D, Turner CE. Actopaxin (alpha-parvin) phosphorylation is required for matrix degradation and cancer cell invasion. J Biol Chem. 2012;287:37309–20.

    Article  CAS  Google Scholar 

  14. LaLonde DP, Brown MC, Bouverat BP, Turner CE. Actopaxin interacts with TESK1 to regulate cell spreading on fibronectin. J Biol Chem. 2005;280:21680–8.

    Article  CAS  Google Scholar 

  15. Clarke DM, Brown MC, LaLonde DP, Turner CE. Phosphorylation of actopaxin regulates cell spreading and migration. J Cell Biol. 2004;166:901–12.

    Article  CAS  Google Scholar 

  16. Huang AH, Pan SH, Chang WH, Hong QS, Chen JJ, Yu SL. PARVA promotes metastasis by modulating ILK signalling pathway in lung adenocarcinoma. PLoS ONE 2015;10:e0118530.

    Article  Google Scholar 

  17. Fukuda T, Guo L, Shi X, Wu C. CH-ILKBP regulates cell survival by facilitating the membrane translocation of protein kinase B/Akt. J Cell Biol. 2003;160:1001–8.

    Article  CAS  Google Scholar 

  18. Guo L, Wu C. Regulation of fibronectin matrix deposition and cell proliferation by the PINCH-ILK-CH-ILKBP complex. FASEB J. 2002;16:1298–1300.

    Article  CAS  Google Scholar 

  19. Attwell S, Mills J, Troussard A, Wu C, Dedhar S. Integration of cell attachment, cytoskeletal localization, and signaling by integrin-linked kinase (ILK), CH-ILKBP, and the tumor suppressor PTEN. Mol Biol Cell. 2003;14:4813–25.

    Article  CAS  Google Scholar 

  20. Ito M, Hagiyama M, Mimae T, Inoue T, Kato T, Yoneshige A, et al. alpha-Parvin, a pseudopodial constituent, promotes cell motility and is associated with lymph node metastasis of lobular breast carcinoma. Breast Cancer Res Treat. 2014;144:59–69.

    Article  CAS  Google Scholar 

  21. Neve RM, Chin K, Fridlyand J, Yeh J, Baehner FL, Fevr T, et al. A collection of breast cancer cell lines for the study of functionally distinct cancer subtypes. Cancer Cell. 2006;10:515–27.

    Article  CAS  Google Scholar 

  22. Gyorffy B, Lanczky A, Eklund AC, Denkert C, Budczies J, Li Q, et al. An online survival analysis tool to rapidly assess the effect of 22,277 genes on breast cancer prognosis using microarray data of 1,809 patients. Breast Cancer Res Treat. 2010;123:725–31.

    Article  Google Scholar 

  23. Fukuda T, Chen K, Shi X, Wu C. PINCH-1 is an obligate partner of integrin-linked kinase (ILK) functioning in cell shape modulation, motility, and survival. J Biol Chem. 2003;278:51324–33.

    Article  CAS  Google Scholar 

  24. Sepulveda JL, Wu C. The parvins. Cell Mol Life Sci. 2006;63:25–35.

    Article  CAS  Google Scholar 

  25. Gupta N, Badeaux M, Liu Y, Naxerova K, Sgroi D, Munn LL, et al. Stress granule-associated protein G3BP2 regulates breast tumor initiation. Proc Natl Acad Sci USA. 2017;114:1033–8.

    Article  CAS  Google Scholar 

  26. Wei SC, Fattet L, Tsai JH, Guo Y, Pai VH, Majeski HE, et al. Matrix stiffness drives epithelial-mesenchymal transition and tumour metastasis through a TWIST1-G3BP2 mechanotransduction pathway. Nat Cell Biol. 2015;17:678–88.

    Article  CAS  Google Scholar 

  27. Irvine K, Stirling R, Hume D, Kennedy D. Rasputin, more promiscuous than ever: a review of G3BP. Int J Dev Biol. 2004;48:1065–77.

    Article  CAS  Google Scholar 

  28. Bikkavilli RK, Malbon CC. Wnt3a-stimulated LRP6 phosphorylation is dependent upon arginine methylation of G3BP2. J Cell Sci. 2012;125:2446–56.

    Article  CAS  Google Scholar 

  29. Ashikari D, Takayama K, Tanaka T, Suzuki Y, Obinata D, Fujimura T, et al. Androgen induces G3BP2 and SUMO-mediated p53 nuclear export in prostate cancer. Oncogene. 2017;36:6272–81.

    Article  CAS  Google Scholar 

  30. Prigent M, Barlat I, Langen H, Dargemont C. IkappaBalpha and IkappaBalpha /NF-kappa B complexes are retained in the cytoplasm through interaction with a novel partner, RasGAP SH3-binding protein 2. J Biol Chem. 2000;275:36441–9.

    Article  CAS  Google Scholar 

  31. Kim MM, Wiederschain D, Kennedy D, Hansen E, Yuan ZM. Modulation of p53 and MDM2 activity by novel interaction with Ras-GAP binding proteins (G3BP). Oncogene. 2007;26:4209–15.

    Article  CAS  Google Scholar 

  32. Xu Y, Lee DK, Feng Z, Xu Y, Bu W, Li Y, et al. Breast tumor cell-specific knockout of Twist1 inhibits cancer cell plasticity, dissemination, and lung metastasis in mice. Proc Natl Acad Sci USA. 2017;114:11494–9.

    Article  CAS  Google Scholar 

  33. Watson MA, Ylagan LR, Trinkaus KM, Gillanders WE, Naughton MJ, Weilbaecher KN, et al. Isolation and molecular profiling of bone marrow micrometastases identifies TWIST1 as a marker of early tumor relapse in breast cancer patients. Clin Cancer Res. 2007;13:5001–9.

    Article  CAS  Google Scholar 

  34. Cheng GZ, Zhang W, Wang LH. Regulation of cancer cell survival, migration, and invasion by Twist: AKT2 comes to interplay. Cancer Res. 2008;68:957–60.

    Article  CAS  Google Scholar 

  35. Li QQ, Xu JD, Wang WJ, Cao XX, Chen Q, Tang F, et al. Twist1-mediated adriamycin-induced epithelial-mesenchymal transition relates to multidrug resistance and invasive potential in breast cancer cells. Clin Cancer Res. 2009;15:2657–65.

    Article  CAS  Google Scholar 

  36. Cheng GZ, Chan J, Wang Q, Zhang W, Sun CD, Wang LH. Twist transcriptionally up-regulates AKT2 in breast cancer cells leading to increased migration, invasion, and resistance to paclitaxel. Cancer Res. 2007;67:1979–87.

    Article  CAS  Google Scholar 

  37. Yang J, Mani SA, Donaher JL, Ramaswamy S, Itzykson RA, Come C, et al. Twist, a master regulator of morphogenesis, plays an essential role in tumor metastasis. Cell. 2004;117:927–39.

    Article  CAS  Google Scholar 

  38. Fu J, Qin L, He T, Qin J, Hong J, Wong J, et al. The TWIST/Mi2/NuRD protein complex and its essential role in cancer metastasis. Cell Res. 2011;21:275–89.

    Article  CAS  Google Scholar 

  39. Li CW, Xia W, Lim SO, Hsu JL, Huo L, Wu Y, et al. AKT1 inhibits epithelial-to-mesenchymal transition in breast cancer through phosphorylation-dependent Twist1 degradation. Cancer Res. 2016;76:1451–62.

    Article  CAS  Google Scholar 

  40. Kudo N, Matsumori N, Taoka H, Fujiwara D, Schreiner EP, Wolff B, et al. Leptomycin B inactivates CRM1/exportin 1 by covalent modification at a cysteine residue in the central conserved region. Proc Natl Acad Sci USA. 1999;96:9112–7.

    Article  CAS  Google Scholar 

  41. Koren S, Bentires-Alj M. Breast tumor heterogeneity: source of fitness, hurdle for therapy. Mol Cell. 2015;60:537–46.

    Article  CAS  Google Scholar 

  42. Ellsworth RE, Blackburn HL, Shriver CD, Soon-Shiong P, Ellsworth DL. Molecular heterogeneity in breast cancer: State of the science and implications for patient care. Semin Cell Dev Biol. 2017;64:65–72.

    Article  CAS  Google Scholar 

  43. Turashvili G, Brogi E. Tumor heterogeneity in breast cancer. Front Med (Lausanne). 2017;4:227.

    Article  Google Scholar 

  44. Rivenbark AG, O’Connor SM, Coleman WB. Molecular and cellular heterogeneity in breast cancer: challenges for personalized medicine. Am J Pathol. 2013;183:1113–24.

    Article  CAS  Google Scholar 

  45. Qin Q, Xu Y, He T, Qin C, Xu J. Normal and disease-related biological functions of Twist1 and underlying molecular mechanisms. Cell Res. 2012;22:90–106.

    Article  CAS  Google Scholar 

  46. Cheng GZ, Zhang WZ, Sun M, Wang Q, Coppola D, Mansour M, et al. Twist is transcriptionally induced by activation of STAT3 and mediates STAT3 oncogenic function. J Biol Chem. 2008;283:14665–73.

    Article  CAS  Google Scholar 

  47. Qin L, Liu Z, Chen H, Xu J. The steroid receptor coactivator-1 regulates twist expression and promotes breast cancer metastasis. Cancer Res. 2009;69:3819–27.

    Article  CAS  Google Scholar 

  48. Martin TA, Goyal A, Watkins G, Jiang WG. Expression of the transcription factors snail, slug, and twist and their clinical significance in human breast cancer. Ann Surg Oncol. 2005;12:488–96.

    Article  Google Scholar 

  49. Mironchik Y, Winnard PT Jr, Vesuna F, Kato Y, Wildes F, Pathak AP, et al. Twist overexpression induces in vivo angiogenesis and correlates with chromosomal instability in breast cancer. Cancer Res. 2005;65:10801–9.

    Article  CAS  Google Scholar 

  50. Ma L, Teruya-Feldstein J, Weinberg RA. Tumour invasion and metastasis initiated by microRNA-10b in breast cancer. Nature. 2007;449:682–8.

    Article  CAS  Google Scholar 

  51. Xu Y, Xu Y, Liao L, Zhou N, Theissen SM, Liao XH, et al. Inducible knockout of Twist1 in young and adult mice prolongs hair growth cycle and has mild effects on general health, supporting Twist1 as a preferential cancer target. Am J Pathol. 2013;183:1281–92.

    Article  CAS  Google Scholar 

  52. Matsuki H, Takahashi M, Higuchi M, Makokha GN, Oie M, Fujii M. Both G3BP1 and G3BP2 contribute to stress granule formation. Genes Cells. 2013;18:135–46.

    Article  CAS  Google Scholar 

  53. Sun Y, Guo C, Ma P, Lai Y, Yang F, Cai J, et al. Kindlin-2 association with Rho GDP-dissociation inhibitor alpha suppresses Rac1 activation and podocyte injury. J Am Soc Nephrol. 2017;28:3545–62.

    Article  CAS  Google Scholar 

  54. Sun Y, Duan Y, Eisenstein AS, Hu W, Quintana A, Lam WK, et al. A novel mechanism of control of NFkappaB activation and inflammation involving A2B adenosine receptors. J Cell Sci. 2012;125:4507–17.

    Article  CAS  Google Scholar 

  55. Chen W, Wang S, Adhikari S, Deng Z, Wang L, Chen L, et al. Simple and integrated spintip-based technology applied for deep proteome profiling. Anal Chem. 2016;88:4864–71.

    Article  CAS  Google Scholar 

  56. Moon S, Han D, Kim Y, Jin J, Ho WK, Kim Y. Interactome analysis of AMP-activated protein kinase (AMPK)-alpha1 and -beta1 in INS-1 pancreatic beta-cells by affinity purification-mass spectrometry. Sci Rep. 2014;4:4376.

    Article  Google Scholar 

  57. Hu W, Yu X, Liu Z, Sun Y, Chen X, Yang X, et al. The complex of TRIP-Br1 and XIAP ubiquitinates and degrades multiple adenylyl cyclase isoforms. Elife. 2017;6.pii: e28021.

    Article  Google Scholar 

Download references

Acknowledgements

We thank Dr. Ruijun Tian of the Department of Chemistry, Southern University of Science and Technology, for help with nano LC-MS/MS analyses, Dr. Z-M Yuan (Harvard School of Public Health) for the Flag-G3BP2a construct, and Drs. Jason D. Weber (Washington University) and Yandong Zhang (Southern University of Science and Technology) for pLVX-AcGFP1-N1 and pLVX-IRES-Hyg vectors. This work was supported by the Chinese Ministry of Science and Technology (2016YFC1302100), the National Natural Science Foundation of China (81772983, 81430068, and 31471311), the Natural Science Foundation of Guangdong Province (2017B030301018), and the Shenzhen Innovation Committee of Science and Technology, China (JCYJ20170817104854302, ZDSYS20140509142721429, and JCYJ20150831142427959).

Author information

Authors and Affiliations

Authors

Contributions

YS and CW designed the study, supervised the project, and wrote the manuscript; YD, CG, CL, PM, SM, ZW, JL, TQ, and LM performed the experiments and data analysis; YD advised on some of the experiments.

Corresponding authors

Correspondence to Ying Sun or Chuanyue Wu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, Y., Ding, Y., Guo, C. et al. α-Parvin promotes breast cancer progression and metastasis through interaction with G3BP2 and regulation of TWIST1 signaling. Oncogene 38, 4856–4874 (2019). https://doi.org/10.1038/s41388-019-0762-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-019-0762-1

This article is cited by

Search

Quick links