Dynamic expression of ZNF382 and its tumor-suppressor role in hepatitis B virus-related hepatocellular carcinogenesis


Hepatitis B virus (HBV) infection is the primary cause of hepatocellular carcinoma (HCC). Zinc-finger protein 382 (ZNF382), which belongs to zinc-finger protein family, has been documented to be downregulated in certain types of cancer. However, its role in HCC remains largely unknown. In this study, we demonstrated that ZNF382 expression was significantly elevated in HBV-infected liver cirrhosis tissues relative to HBV-negative normal liver tissues at protein levels, but not at mRNA levels, and was positively correlated with the levels of HBV DNA and hepatitis B virus X protein (HBx). Further studies revealed that ZNF382 was a target of miR-6867, and HBx promoted the translation of ZNF382 during HBV chronic infection through Erk-mediated miR-6867 inhibition. In addition, our data showed that ZNF382 was frequently downregulated by promoter methylation in HBV-related HCCs relative to HBV-infected liver cirrhosis tissues, and decreased expression of ZNF382 was strongly correlated with poor survival in early-stage HCC patients. Functional studies demonstrated that ZNF382 was a potent tumor suppressor in HCC cells through inhibiting cell proliferation, colony formation, migration, invasion, and tumorigenic potential in nude mice, and inducing cell apoptosis. Mechanistically, ZNF382 exerted its tumor-suppressor functions in HCC through transcriptionally repressing its downstream targets such as Fos proto-oncogene (FOS), Jun proto-oncogene (JUN), disheveled segment polarity protein 2 (DVL2), and frizzled class receptor 1 (FZD1), thereby impairing the activities of activating protein 1 (AP-1) and Wnt/β-catenin pathways and activating p53 signaling. Altogether, our data show that ZNF382 acts as a tumor suppressor, and is co-regulated by HBx and epigenetic mechanism in HBV-related hepatocellular carcinogenesis.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7


  1. 1.

    Torre LA, Bray F, Siegel RL, Ferlay J, Lortet-Tieulent J, Jemal A. Global cancer statistics, 2012. CA Cancer J Clin. 2015;65:87–108.

    Article  Google Scholar 

  2. 2.

    Chen W, Zheng R, Baade PD, Zhang S, Zeng H, Bray F, et al. Cancer statistics in China, 2015. CA Cancer J Clin. 2016;66:115–32.

    Article  Google Scholar 

  3. 3.

    Arzumanyan A, Reis HM, Feitelson MA. Pathogenic mechanisms in HBV and HCV-associated hepatocellular carcinoma. Nat Rev Cancer. 2013;13:123–35.

    CAS  Article  Google Scholar 

  4. 4.

    Chan SL, Wong VW, Qin S, Chan HL. Infection and cancer: the case of hepatitis B. J Clin Oncol. 2016;34:83–90.

    CAS  Article  Google Scholar 

  5. 5.

    Niu Y, Xu M, Slagle BL, Huang H, Li S, Guo GL, et al. Farnesoid X receptor ablation sensitizes mice to hepatitis b virus X protein-induced hepatocarcinogenesis. Hepatol (Baltim, Md). 2017;65:893–906.

    CAS  Article  Google Scholar 

  6. 6.

    Ye H, Zhang C, Wang BJ, Tan XH, Zhang WP, Teng Y, et al. Synergistic function of Kras mutation and HBx in initiation and progression of hepatocellular carcinoma in mice. Oncogene. 2014;33:5133–8.

    CAS  Article  Google Scholar 

  7. 7.

    Wang C, Yang W, Yan HX, Luo T, Zhang J, Tang L, et al. Hepatitis B virus X (HBx) induces tumorigenicity of hepatic progenitor cells in 3,5-diethoxycarbonyl-1,4-dihydrocollidine- treated HBx transgenic mice. Hepatol (Baltim, Md). 2012;55:108–20.

    CAS  Article  Google Scholar 

  8. 8.

    Benn J, Schneider RJ. Hepatitis B virus HBx protein activates Ras-GTP complex formation and establishes a Ras, Raf, MAP kinase signaling cascade. Proc Natl Acad Sci USA. 1994;91:10350–4.

    CAS  Article  Google Scholar 

  9. 9.

    Bui-Nguyen TM, Pakala SB, Sirigiri RD, Xia W, Hung MC, Sarin SK, et al. NF-kappaB signaling mediates the induction of MTA1 by hepatitis B virus transactivator protein HBx. Oncogene. 2010;29:1179–89.

    CAS  Article  Google Scholar 

  10. 10.

    Chiu CM, Yeh SH, Chen PJ, Kuo TJ, Chang CJ, Chen PJ, et al. Hepatitis B virus X protein enhances androgen receptor-responsive gene expression depending on androgen level. Proc Natl Acad Sci USA. 2007;104:2571–8.

    CAS  Article  Google Scholar 

  11. 11.

    Kekulé AS, Lauer U, Weiss L, Luber B, Hofschneider PH. Hepatitis B virus transactivator HBx uses a tumour promoter signalling pathway. Nature. 1993;361:742–5.

    Article  Google Scholar 

  12. 12.

    Murata M, Matsuzaki K, Yoshida K, Sekimoto G, Tahashi Y, Mori S, et al. Hepatitis B virus X protein shifts human hepatic transforming growth factor (TGF)-beta signaling from tumor suppression to oncogenesis in early chronic hepatitis B. Hepatol (Baltim, Md). 2009;49:1203–17.

    CAS  Article  Google Scholar 

  13. 13.

    Diao J, Garces R, Richardson CD. X protein of hepatitis B virus modulates cytokine and growth factor related signal transduction pathways during the course of viral infections and hepatocarcinogenesis. Cytokine Growth Factor Rev. 2001;12:189–205.

    CAS  Article  Google Scholar 

  14. 14.

    Zhang T, Zhang J, You X, Liu Q, Du Y, Gao Y, et al. Hepatitis B virus X protein modulates oncogene Yes-associated protein by CREB to promote growth of hepatoma cells. Hepatol (Baltim, Md). 2012;56:2051–9.

    CAS  Article  Google Scholar 

  15. 15.

    Antunović J, Lemieux N, Cromlish JA. The 17 kDa HBx protein encoded by hepatitis B virus interacts with the activation domains of Oct-1, and functions as a coactivator in the activation and repression of a human U6 promoter. Cell Mol Biol Res. 1993;39:463–82.

    PubMed  Google Scholar 

  16. 16.

    Zhou SJ, Deng YL, Liang HF, Jaoude JC, Liu FY. Hepatitis B virus X protein promotes CREB-mediated activation of miR-3188 and Notch signaling in hepatocellular carcinoma. Cell Death Differ. 2017;24:1577–87.

    CAS  Article  Google Scholar 

  17. 17.

    Song K, Han C, Zhang J, Lu D, Dash S, Feitelson M, et al. Epigenetic regulation of MicroRNA-122 by peroxisome proliferator activated receptor-gamma and hepatitis b virus X protein in hepatocellular carcinoma cells. Hepatol (Baltim, Md). 2013;58:1681–92.

    CAS  Article  Google Scholar 

  18. 18.

    Xu X, Fan Z, Kang L, Han J, Jiang C, Zheng X, et al. Hepatitis B virus X protein represses miRNA-148a to enhance tumorigenesis. J Clin Invest. 2013;123:630–45.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. 19.

    Qiu X, Dong S, Qiao F, Lu S, Song Y, Lao Y, et al. HBx-mediated miR-21 upregulation represses tumor-suppressor function of PDCD4 in hepatocellular carcinoma. Oncogene. 2013;32:3296–305.

    CAS  Article  Google Scholar 

  20. 20.

    Calvisi DF, Ladu S, Gorden A, Farina M, Lee JS, Conner EA, et al. Mechanistic and prognostic significance of aberrant methylation in the molecular pathogenesis of human hepatocellular carcinoma. J Clin Invest. 2007;117:2713–22.

    CAS  Article  Google Scholar 

  21. 21.

    Revill K, Wang T, Lachenmayer A, Kojima K, Harrington A, Li J, et al. Genome-wide methylation analysis and epigenetic unmasking identify tumor suppressor genes in hepatocellular carcinoma. Gastroenterology. 2013;145:1424–35.

    CAS  Article  Google Scholar 

  22. 22.

    Lim SO, Gu JM, Kim MS, Kim HS, Park YN, Park CK, et al. Epigenetic changes induced by reactive oxygen species in hepatocellular carcinoma: methylation of the E-cadherin promoter. Gastroenterology. 2008;135:2128–40.

    CAS  Article  Google Scholar 

  23. 23.

    Nishida N, Kudo M, Nagasaka T, Ikai I, Goel A. Characteristic patterns of altered DNA methylation predict emergence of human hepatocellular carcinoma. Hepatol (Baltim, Md). 2012;56:994–1003.

    CAS  Article  Google Scholar 

  24. 24.

    Luo K, Yuan W, Zhu C, Li Y, Wang Y, Zeng W, et al. Expression of a novel Krupple-like zinc-finger gene, ZNF382, in human heart. Biochem Biophys Res Commun. 2002;299:606–12.

    CAS  Article  Google Scholar 

  25. 25.

    Cheng Y, Geng H, Cheng SH, Liang P, Bai Y, Li J, et al. KRAB zinc finger protein ZNF382 is a proapoptotic tumor suppressor that represses multiple oncogenes and is commonly silenced in multiple carcinomas. Cancer Res. 2010;70:6516–26.

    CAS  Article  Google Scholar 

  26. 26.

    Zhang C, Xiang T, Li S, Ye L, Feng Y, Pei L, et al. The novel 19q13 KRAB zinc-finger tumour suppressor ZNF382 is frequently methylated in oesophageal squamous cell carcinoma and antagonises Wnt/β-catenin signaling. Cell Death Dis. 2018;9:573.

    Article  Google Scholar 

  27. 27.

    Liu Z, Zhang J, Gao Y, Pei L, Zhou J, Gu L, et al. Large-scale characterization of DNA methylation changes in human gastric carcinomas with and without metastasis. Clin Cancer Res. 2014;20:4598–612.

    CAS  Article  Google Scholar 

  28. 28.

    Neuveut C, Wei Y, Buendia MA. Mechanisms of HBV-related hepatocarcinogenesis. J Hepatol. 2010;52:594–604.

    CAS  Article  Google Scholar 

  29. 29.

    Arzumanyan A, Sambandam V, Clayton MM, Choi SS, Xie G, Diehl AM, et al. Hedgehog signaling blockade delays hepatocarcinogenesis induced by hepatitis B virus X protein. Cancer Res. 2012;72:5912–20.

    CAS  Article  Google Scholar 

  30. 30.

    Berindan-Neagoe I, Monroig Pdel C, Pasculli B, Calin GA. MicroRNAome genome: a treasure for cancer diagnosis and therapy. CA Cancer J Clin. 2014;64:311–36.

    Article  Google Scholar 

  31. 31.

    Sun HL, Cui R, Zhou J, Teng KY, Hsiao YH, Nakanishi K, et al. Activation globally downregulates miRNAs through phosphorylating exportin-5. Cancer Cell. 2016;30:723–36.

    CAS  Article  Google Scholar 

  32. 32.

    Shan C, Xu F, Zhang S, You J, You X, Qiu L, et al. Hepatitis B virus X protein promotes liver cell proliferation via a positive cascade loop involving arachidonic acid metabolism and p-ERK1/2. Cell Res. 2010;20:563–75.

    CAS  Article  Google Scholar 

  33. 33.

    Kim DJ, Kim J, Spaunhurst K, Montoya J, Khodosh R, Chandra K, et al. Open-label, exploratory phase II trial of oral itraconazole for the treatment of basal cell carcinoma. J Clin Oncol. 2014;32:745–51.

    CAS  Article  Google Scholar 

  34. 34.

    Muthukrishnan SD, Yang X, Friesel R, Oxburgh L. Concurrent BMP7 and FGF9 signalling governs AP-1 function to promote self-renewal of nephron progenitor cells. Nat Commun. 2015;6:10027.

    CAS  Article  Google Scholar 

  35. 35.

    Schwabe RF, Bradham CA, Uehara T, Hatano E, Bennett BL, Schoonhoven R, et al. c-Jun-N-terminal kinase drives cyclin D1 expression and proliferation during liver regeneration. Hepatol (Baltim, Md). 2003;37:824–32.

    CAS  Article  Google Scholar 

  36. 36.

    Schreiber M, Kolbus A, Piu F, Szabowski A, Möhle-Steinlein U, Tian J, et al. Control of cell cycle progression by c-Jun is p53 dependent. Genes Dev. 1999;13:607–19.

    CAS  Article  Google Scholar 

  37. 37.

    Esteller M. Epigenetics in cancer. N Engl J Med. 2008;358:1148–59.

    CAS  Article  Google Scholar 

  38. 38.

    Urrutia R. KRAB-containing zinc-finger repressor proteins. Genome Biol. 2003;4:231.

    Article  Google Scholar 

  39. 39.

    Qiang W, Zhao Y, Yang Q, Liu W, Guan H, Lv S, et al. ZIC1 is a putative tumor suppressor in thyroid cancer by modulating major signaling pathways and transcription factor FOXO3a. J Clin Endocrinol Metab. 2014;99:1163–72.

    Article  Google Scholar 

  40. 40.

    Shi J, Yao D, Liu W, Wang N, Lv H, Zhang G, et al. Highly frequent PIK3CA amplification is associated with poor prognosis in gastric cancer. BMC Cancer. 2012;12:50.

    CAS  Article  Google Scholar 

  41. 41.

    Shi J, Yao D, Liu W, Wang N, Lv H, He N, et al. Frequent gene amplification predicts poor prognosis in gastric cancer. Int J Mol Sci. 2012;13:4714–26.

    CAS  Article  Google Scholar 

  42. 42.

    Shi J, Liu W, Sui F, Lu R, He Q, Yang Q, et al. Frequent amplification of AIB1, a critical oncogene modulating major signaling pathways, is associated with poor survival in gastric cancer. Oncotarget. 2015;6:14344–59.

    PubMed  PubMed Central  Google Scholar 

  43. 43.

    Chen J, Zhang W, Lin J, Wang F, Wu M, Chen C, et al. An efficient antiviral strategy for targeting hepatitis B virus genome using transcription activator-like effector nucleases. Mol Ther. 2014;22:303–11.

    Article  Google Scholar 

  44. 44.

    Shi J, Zhang G, Yao D, Liu W, Wang N, Ji M, et al. Prognostic significance of aberrant gene methylation in gastric cancer. Am J Cancer Res. 2012;2:116–29.

    CAS  PubMed  Google Scholar 

  45. 45.

    Wang D, Cui W, Wu X, Qu Y, Wang N, Shi B, et al. RUNX3 site-specific hypermethylation predicts papillary thyroid cancer recurrence. Am J Cancer Res. 2014;4:725–37.

    CAS  PubMed  PubMed Central  Google Scholar 

  46. 46.

    Li Y, Yang Q, Guan H, Shi B, Ji M, Hou P. ZNF677 suppresses Akt phosphorylation and tumorigenesis in thyroid cancer. Cancer Res. 2018;78:5216–28.

    CAS  Article  Google Scholar 

  47. 47.

    Shin YJ, Kim MS, Kim MS, Lee J, Kang M, Jeong JH. High-mobility group box 2 (HMGB2) modulates radioresponse and is downregulated by p53 in colorectal cancer cell. Cancer Biol Ther. 2013;14:213–21.

    CAS  Article  Google Scholar 

  48. 48.

    Shi J, Qu Y, Li X, Sui F, Yao D, Yang Q, et al. Increased expression of EHF via gene amplification contributes to the activation of HER family signaling and associates with poor survival in gastric cancer. Cell Death Dis. 2016;7:2442.

    Article  Google Scholar 

Download references


This study was supported by the National Nature Science Foundation of China (no. 81402340, 81572627, and 81672645).

Author information




PH and QY conceived and designed the experiments. SD, YC, and PC conducted the experiments. SD, MJ, and PH analyzed the data. JZ, BS, and PH contributed reagents and materials. SD and PH wrote the paper.

Corresponding authors

Correspondence to Qi Yang or Peng Hou.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Dang, S., Zhou, J., Chen, Y. et al. Dynamic expression of ZNF382 and its tumor-suppressor role in hepatitis B virus-related hepatocellular carcinogenesis. Oncogene 38, 4804–4819 (2019). https://doi.org/10.1038/s41388-019-0759-9

Download citation

Further reading