Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Lack of CD45 in FLT3-ITD mice results in a myeloproliferative phenotype, cortical porosity, and ectopic bone formation

Abstract

The receptor tyrosine kinase FLT3 is expressed in myeloid and lymphoid progenitor cells. Activating mutations in FLT3 occur in 25–30% of acute myeloid leukaemia (AML) patients. Most common are internal tandem duplications of sequence (ITD) leading to constitutive FLT3-ITD kinase activity with an altered signalling quality promoting leukaemic cell transformation. Here, we observed the attenuating role of the receptor-like protein tyrosine phosphatase (RPTP) CD45/Ptprc in FLT3 signalling in vivo. Low level expression of this abundant RPTP correlates with a poor prognosis of FLT3-ITD-positive AML patients. To get a further insight into the regulatory role of Ptprc in FLT3-ITD activity in vivo, Ptprc knock-out mice were bred with FLT3-ITD knock-in mice. Inactivation of the Ptprc gene in FLT3-ITD mice resulted in a drastically shortened life span and development of severe monocytosis, a block in B-cell development and anaemia. The myeloproliferative phenotype was associated with extramedullary haematopoiesis, splenohepatomegaly and severe alterations of organ structures. The phenotypic alterations were associated with increased transforming signalling of FLT3-ITD, including activation of its downstream target STAT5. These data reveal the capacity of Ptprc for the regulation of FLT3-ITD signalling activity in vivo. In addition, histopathology and computed tomography (CT) revealed an unexpected bone phenotype; the FLT3-ITD Ptprc-/- mice, but none of the controls, showed pronounced alterations in bone morphology and, in part, apparent features of osteoporosis. In the spleen, ectopic bone formation was observed. The observed bone phenotypes suggest a previously unappreciated capacity of FLT3-ITD (and presumably FLT3) to regulate bone development/remodelling, which is under negative control of CD45/Ptprc.

Key points

  • Low PTPRC expression of FLT3-ITD-positive AML patients correlates with poor prognosis

  • FLT3-ITD/Ptprc-/- mice develop severe monocytosis, a block in B-cell formation and anaemia

  • FLT3-ITD/Ptprc-/- mice develop myeloproliferative neoplasm with extramedullary haematopoiesis and splenohepatomegaly

  • Inactivation of Ptprc in the presence of FLT3-ITD results in cortical porosity and ectopic bone formation

  • Ptprc is negatively regulating transforming FLT3-ITD signalling in vivo

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Papaemmanuil E, Gerstung M, Bullinger L, Gaidzik VI, Paschka P, Roberts ND. et al. Genomic classification and prognosis in acute myeloid leukemia. N Engl J Med. 2016;374:2209–21.

    Article  CAS  Google Scholar 

  2. Fröhling S, Scholl C, Levine RL, Loriaux M, Boggon TJ, Bernard OA. et al. Identification of driver and passenger mutations of FLT3 by high-throughput DNA sequence analysis and functional assessment of candidate alleles. Cancer Cell. 2007;12:501–13.

    Article  Google Scholar 

  3. Pinheiro RF, Moreira Ede S, Silva MR, Greggio B, Alberto FL, Chauffaille Mde L. FLT3 mutation and AML/ETO in a case of Myelodysplastic syndrome in transformation corroborates the two hit model of leukemogenesis. Leukemia Res. 2007;31:1015–8.

    Article  CAS  Google Scholar 

  4. Stirewalt DL, Radich JP. The role of FLT3 in haematopoietic malignancies. Nat Rev Cancer. 2003;3:650–65.

    Article  CAS  Google Scholar 

  5. Mizuki M, Fenski R, Halfter H, Matsumura I, Schmidt R, Müller C. et al. Flt3 mutations from patients with acute myeloid leukemia induce transformation of 32D cells mediated by the Ras and STAT5 pathways. Blood. 2000;96:3907–14.

    CAS  PubMed  Google Scholar 

  6. Hayakawa F, Towatari M, Kiyoi H, Tanimoto M, Kitamura T, Saito H. et al. Tandem-duplicated Flt3 constitutively activates STAT5 and MAP kinase and introduces autonomous cell growth in IL-3-dependent cell lines. Oncogene. 2000;19:624–31.

    Article  CAS  Google Scholar 

  7. Godfrey R, Arora D, Bauer R, Stopp S, Muller JP, Heinrich T. et al. Cell transformation by FLT3 ITD in acute myeloid leukemia involves oxidative inactivation of the tumor suppressor protein-tyrosine phosphatase DEP-1/ PTPRJ. Blood. 2012;119:4499–511.

    Article  CAS  Google Scholar 

  8. Jayavelu AK, Müller JP, Bauer R, Bohmer SA, Lassig J, Cerny-Reiterer S. et al. NOX4-driven ROS formation mediates PTP inactivation and cell transformation in FLT3ITD-positive AML cells. Leukemia. 2016;30:473–83.

    Article  CAS  Google Scholar 

  9. Sallmyr A, Fan J, Datta K, Kim KT, Grosu D, Shapiro P. et al. Internal tandem duplication of FLT3 (FLT3/ITD) induces increased ROS production, DNA damage, and misrepair: implications for poor prognosis in AML. Blood. 2008;111:3173–82.

    Article  CAS  Google Scholar 

  10. Lee BH, Tothova Z, Levine RL, Anderson K, Buza-Vidas N, Cullen DE. et al. FLT3 mutations confer enhanced proliferation and survival properties to multipotent progenitors in a murine model of chronic myelomonocytic leukemia. Cancer Cell. 2007;12:367–80.

    Article  CAS  Google Scholar 

  11. Li L, Piloto O, Nguyen HB, Greenberg K, Takamiya K, Racke F. et al. Knock-in of an internal tandem duplication mutation into murine FLT3 confers myeloproliferative disease in a mouse model. Blood. 2008;111:3849–58.

    Article  CAS  Google Scholar 

  12. Kelly LM, Liu Q, Kutok JL, Williams IR, Boulton CL, Gilliland DG. FLT3 internal tandem duplication mutations associated with human acute myeloid leukemias induce myeloproliferative disease in a murine bone marrow transplant model. Blood. 2002;99:310–8.

    Article  CAS  Google Scholar 

  13. Alonso A, Sasin J, Bottini N, Friedberg I, Osterman A, Godzik A. et al. Protein tyrosine phosphatases in the human genome. Cell. 2004;117:699–711.

    Article  CAS  Google Scholar 

  14. Östman A, Hellberg C, Böhmer FD. Protein-tyrosine phosphatases and cancer. Nat Rev Cancer. 2006;6:307–20.

    Article  Google Scholar 

  15. Böhmer F, Szedlacsek S, Tabernero L, Ostman A, den Hertog J. Protein tyrosine phosphatase structure-function relationships in regulation and pathogenesis. FEBS J. 2013;280:413–31.

    Article  Google Scholar 

  16. Alexander DR. The CD45 tyrosine phosphatase: a positive and negative regulator of immune cell function. Semin Immunol. 2000;12:349–59.

    Article  CAS  Google Scholar 

  17. Hendriks WJ, Pulido R. Protein tyrosine phosphatase variants in human hereditary disorders and disease susceptibilities. Biochim Biophys Acta. 2013;1832:1673–96.

    Article  CAS  Google Scholar 

  18. DeFranco AL, Chan VW, Lowell CA. Positive and negative roles of the tyrosine kinase Lyn in B cell function. Semin Immunol. 1998;10:299–307.

    Article  CAS  Google Scholar 

  19. Shivtiel S, Kollet O, Lapid K, Schajnovitz A, Goichberg P, Kalinkovich A. et al. CD45 regulates retention, motility, and numbers of hematopoietic progenitors, and affects osteoclast remodeling of metaphyseal trabecules. J Exp Med. 2008;205:2381–95.

    Article  CAS  Google Scholar 

  20. Lacombe F, Durrieu F, Briais A, Dumain P, Belloc F, Bascans E. et al. Flow cytometry CD45 gating for immunophenotyping of acute myeloid leukemia. Leukemia. 1997;11:1878–86.

    Article  CAS  Google Scholar 

  21. Arora D, Kothe S, van den Eijnden M, Hooft van Huijsduijnen R, Heidel F, Fischer T. et al. Expression of protein-tyrosine phosphatases in Acute Myeloid Leukemia cells: FLT3 ITD sustains high levels of DUSP6 expression. Cell Commun Signal. 2012;10:19

    Article  CAS  Google Scholar 

  22. Arora D, Stopp S, Bohmer SA, Schons J, Godfrey R, Masson K. et al. Protein-tyrosine phosphatase DEP-1 controls receptor tyrosine kinase FLT3 signaling. J Biol Chem. 2011;286:10918–29.

    Article  CAS  Google Scholar 

  23. Li L, Bailey E, Greenblatt S, Huso D, Small D. Loss of the wild-type allele contributes to myeloid expansion and disease aggressiveness in FLT3/ITD knockin mice. Blood. 2011;118:4935–45.

    Article  CAS  Google Scholar 

  24. Pyzer AR, Stroopinsky D, Rajabi H, Washington A, Tagde A, Coll M. et al. MUC1-mediated induction of myeloid-derived suppressor cells in patients with acute myeloid leukemia. Blood. 2017;129:1791–801.

    Article  CAS  Google Scholar 

  25. Schmidt-Arras DE, Böhmer A, Markova B, Choudhary C, Serve H, Böhmer FD. Tyrosine phosphorylation regulates maturation of receptor tyrosine kinases. Mol Cell Biol. 2005;25:3690–703.

    Article  CAS  Google Scholar 

  26. Choudhary C, Olsen JV, Brandts C, Cox J, Reddy PN, Böhmer FD. et al. Mislocalized activation of oncogenic RTKs switches downstream signaling outcomes. Mol Cell. 2009;36:326–39.

    Article  CAS  Google Scholar 

  27. Gabbianelli M, Pelosi E, Montesoro E, Valtieri M, Luchetti L, Samoggia P. et al. Multi-level effects of flt3 ligand on human hematopoiesis: expansion of putative stem cells and proliferation of granulomonocytic progenitors/monocytic precursors. Blood. 1995;86:1661–70.

    CAS  PubMed  Google Scholar 

  28. Rusten LS, Lyman SD, Veiby OP, Jacobsen SE. The FLT3 ligand is a direct and potent stimulator of the growth of primitive and committed human CD34 + bone marrow progenitor cells in vitro. Blood. 1996;87:1317–25.

    CAS  PubMed  Google Scholar 

  29. Lee NK, Sowa H, Hinoi E, Ferron M, Ahn JD, Confavreux C. Endocrine regulation of energy metabolism by the skeleton. Cell. 2007;130:456–69.

    Article  CAS  Google Scholar 

  30. Gilliland DG, Griffin JD. The roles of FLT3 in hematopoiesis and leukemia. Blood. 2002;100:1532–42.

    Article  CAS  Google Scholar 

  31. Rasko JE, Metcalf D, Rossner MT, Begley CG, Nicola NA. The flt3/flk-2 ligand: receptor distribution and action on murine haemopoietic cell survival and proliferation. Leukemia. 1995;9:2058–66.

    CAS  PubMed  Google Scholar 

  32. Voronov I, Manolson MF. Editorial: Flt3 ligand-friend or foe? J Leukocyte Biol. 2016;99:401–3.

    Article  CAS  Google Scholar 

  33. Schulte C, Beelen DW, Schaefer UW, Mann K. Bone loss in long-term survivors after transplantation of hematopoietic stem cells: a prospective study. Osteoporos Int. 2000;11:344–53.

    Article  CAS  Google Scholar 

  34. Ebeling PR, Thomas DM, Erbas B, Hopper JL, Szer J, Grigg AP. Mechanisms of bone loss following allogeneic and autologous hemopoietic stem cell transplantation. J Bone Miner Res. 1999;14:342–50.

    Article  CAS  Google Scholar 

  35. Zhu JW, Brdicka T, Katsumoto TR, Lin J, Weiss A. Structurally distinct phosphatases CD45 and CD148 both regulate B cell and macrophage immunoreceptor signaling. Immunity. 2008;28:183–96.

    Article  CAS  Google Scholar 

  36. Verhaak RG, Wouters BJ, Erpelinck CA, Abbas S, Beverloo HB, Lugthart S. et al. Prediction of molecular subtypes in acute myeloid leukemia based on gene expression profiling. Haematologica. 2009;94:131–4.

    Article  Google Scholar 

Download references

Acknowledgements

We are thankful to Jörg Cammenga (Lund University, Sweden) for kindly providing FLT3-ITD mice and Klaus Metzeler for providing array data. The work was supported by Deutsche Forschungsgemeinschaft (grant Mu955/11-1), the Federal Ministry of Education and Research (BMBF), Germany, CancerTel-Sys (FKZ 01ZX1302B, 01ZX1602B) and IFB/CSCC (01EO1002, 01EO1502).

Author information

Authors and Affiliations

Authors

Contributions

AK, JPM performed the research; VA, RK processed bioinformatics; BH, CMS, MTF processed CT data; TMS, FH, FDB, JPM analysed and interpreted the data; IDJ, LH, FDB, FH, JPM designed and conceptualised the research; AK, MR, FDB, FH, JPM wrote the manuscript. All the authors read and approved the manuscript.

Corresponding author

Correspondence to Jörg P. Müller.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kresinsky, A., Schnöder, T.M., Jacobsen, I.D. et al. Lack of CD45 in FLT3-ITD mice results in a myeloproliferative phenotype, cortical porosity, and ectopic bone formation. Oncogene 38, 4773–4787 (2019). https://doi.org/10.1038/s41388-019-0757-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-019-0757-y

This article is cited by

Search

Quick links