Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Signal transducer and activator of transcription (STAT)-5: an opportunity for drug development in oncohematology

Abstract

The signal transducer and activator of transcription (STAT) are transcription factors that work via JAK/STAT pathway regulating the expression of genes involved in cell survival, proliferation, differentiation, development, immune response, and, among other essential biological functions, hematopoiesis. JAK/STAT signaling is strictly regulated under normal physiological conditions. However, a large group of diverse diseases has been associated to an aberrant regulation of STAT factors. Erroneous modulation of the pathway leads to constitutive STAT activation, thereby driving proliferation, inflammation, and an uncontrolled immune response. Deregulated STAT5 activation has been found in the development of many hematopoietic tumors, including chronic and acute leukemias, polycythemia vera, and lymphoma. Mutations in the kinases that phosphorylate STAT5, and/or overexpression of the upstream receptor-associated tyrosine kinases have been suggested as the main drivers of constitutive STAT5 activation. Hyper-activated STAT5 leads to the aberrant expression of its target genes including antiapoptotic, proliferative, and pro-inflammatory genes, favouring tumorigenesis. In this review, we intent to discuss the biology of JAK/STAT pathway, with particular focus on STAT5 and its crucial role in the development and progression of hematologic malignancies. Furthermore, we provide a synopsis of potential therapeutic strategies based on STAT5 activity inhibition that may represent an excellent opportunity for drug development in oncohematology.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. O’Shea JJ, Schwartz DM, Villarino AV, Gadina M, McInnes IB, Laurence A. The JAK-STAT pathway: impact on human disease and therapeutic intervention. Annu Rev Med. 2015;66:311–28.

    PubMed Central  PubMed  Google Scholar 

  2. Rawlings JS, Rosler KM, Harrison DA. The JAK/STAT signaling pathway. J Cell Sci. 2004;117(Pt 8):1281–3.

    CAS  PubMed  Google Scholar 

  3. Kiu H, Nicholson SE. Biology and significance of the JAK/STAT signalling pathways. Growth Factors. 2012;30:88–106.

    CAS  PubMed Central  PubMed  Google Scholar 

  4. Miklossy G, Hilliard TS, Turkson J. Therapeutic modulators of STAT signalling for human diseases. Nat Rev Drug Discov. 2013;12:611–29.

    CAS  PubMed Central  PubMed  Google Scholar 

  5. Sonkin D, Palmer M, Rong X, Horrigan K, Regnier CH, Fanton C, et al. The identification and characterization of a STAT5 gene signature in hematologic malignancies. Cancer Biomark. 2015;15:79–87.

    CAS  PubMed  Google Scholar 

  6. Bibi S, Arslanhan MD, Langenfeld F, Jeanningros S, Cerny-Reiterer S, Hadzijusufovic E, et al. Co-operating STAT5 and AKT signaling pathways in chronic myeloid leukemia and mastocytosis: possible new targets of therapy. Haematologica. 2014;99:417–29.

    CAS  PubMed Central  PubMed  Google Scholar 

  7. Ghoreschi K, Laurence A, O’Shea JJ. Janus kinases in immune cell signaling. Immunol Rev. 2009;228:273–87.

    CAS  PubMed Central  PubMed  Google Scholar 

  8. Vainchenker W, Dusa A, Constantinescu SN. JAKs in pathology: role of Janus kinases in hematopoietic malignancies and immunodeficiencies. Semin Cell Dev Biol. 2008;19:385–93.

    CAS  PubMed  Google Scholar 

  9. Ehret GB, Reichenbach P, Schindler U, Horvath CM, Fritz S, Nabholz M, et al. DNA binding specificity of different STAT proteins. Comparison of in vitro specificity with natural target sites. J Biol Chem. 2001;276:6675–88.

    CAS  PubMed  Google Scholar 

  10. Schindler C, Plumlee C. Inteferons pen the JAK-STAT pathway. Semin Cell Dev Biol. 2008;19:311–8.

    CAS  PubMed Central  PubMed  Google Scholar 

  11. Haura EB, Turkson J, Jove R. Mechanisms of disease: insights into the emerging role of signal transducers and activators of transcription in cancer. Nat Clin Pract Oncol. 2005;2:315–24.

    CAS  PubMed  Google Scholar 

  12. Braunstein J, Brutsaert S, Olson R, Schindler C. STATs dimerize in the absence of phosphorylation. J Biol Chem. 2003;278:34133–40.

    CAS  PubMed  Google Scholar 

  13. Yang S, Park K, Turkson J, Arteaga CL. Ligand-independent phosphorylation of Y869 (Y845) links mutant EGFR signaling to stat-mediated gene expression. Exp Cell Res. 2008;314:413–9.

    CAS  PubMed  Google Scholar 

  14. Hu X, Dutta P, Tsurumi A, Li J, Wang J, Land H, et al. Unphosphorylated STAT5A stabilizes heterochromatin and suppresses tumor growth. Proc Natl Acad Sci USA. 2013;110:10213–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Fernández-Pérez L, Flores-Morales A, Guerra B, Díaz-Chico JC, Iglesias-Gato D. Growth hormone receptor signaling pathways and its negative regulation by SOCS2. In: Aguayo MdCC-, editor. Restricted growth: clinical, genetic and molecular aspects. InTechOpen; 2016. p. 125–45.

  16. Shuai K, Liu B. Regulation of JAK-STAT signalling in the immune system. Nat Rev Immunol. 2003;3:900–11.

    CAS  PubMed  Google Scholar 

  17. O’Sullivan LA, Liongue C, Lewis RS, Stephenson SE, Ward AC. Cytokine receptor signaling through the Jak-Stat-Socs pathway in disease. Mol Immunol. 2007;44:2497–506.

    PubMed  Google Scholar 

  18. Wakao H, Gouilleux F, Groner B. Mammary gland factor (MGF) is a novel member of the cytokine regulated transcription factor gene family and confers the prolactin response. EMBO J. 1994;13:2182–91.

    CAS  PubMed Central  PubMed  Google Scholar 

  19. Able AA, Burrell JA, Stephens JM. STAT5-interacting proteins: a synopsis of proteins that regulate Stat5 activity. Biology (Basel). 2017;6:pii: E20.

    PubMed Central  Google Scholar 

  20. Hughes K, Watson CJ. The spectrum of STAT functions in mammary gland development. JAKSTAT. 2012;1:151–8.

    PubMed Central  PubMed  Google Scholar 

  21. Schindler C, Levy DE, Decker T. JAK-STAT signaling: from interferons to cytokines. J Biol Chem. 2007;282:20059–63.

    CAS  PubMed  Google Scholar 

  22. Wiwi CA, Waxman DJ. Role of hepatocyte nuclear factors in growth hormone-regulated, sexually dimorphic expression of liver cytochromes P450. Growth Factors. 2004;22:79–88.

    CAS  PubMed  Google Scholar 

  23. Murray PJ. The JAK-STAT signaling pathway: input and output integration. J Immunol. 2007;178:2623–9.

    CAS  PubMed  Google Scholar 

  24. Wierenga AT, Vellenga E, Schuringa JJ. Maximal STAT5-induced proliferation and self-renewal at intermediate STAT5 activity levels. Mol Cell Biol. 2008;28:6668–80.

    CAS  PubMed Central  PubMed  Google Scholar 

  25. Heltemes-Harris LM, Farrar MA. The role of STAT5 in lymphocyte development and transformation. Curr Opin Immunol. 2012;24:146–52.

    CAS  PubMed Central  PubMed  Google Scholar 

  26. Park JH, Adoro S, Guinter T, Erman B, Alag AS, Catalfamo M, et al. Signaling by intrathymic cytokines, not T cell antigen receptors, specifies CD8 lineage choice and promotes the differentiation of cytotoxic-lineage T cells. Nat Immunol. 2010;11:257–64.

    CAS  PubMed Central  PubMed  Google Scholar 

  27. Hoelbl A, Kovacic B, Kerenyi MA, Simma O, Warsch W, Cui Y, et al. Clarifying the role of Stat5 in lymphoid development and Abelson-induced transformation. Blood. 2006;107:4898–906.

    CAS  PubMed  Google Scholar 

  28. Yao Z, Kanno Y, Kerenyi M, Stephens G, Durant L, Watford WT, et al. Nonredundant roles for Stat5a/b in directly regulating Foxp3. Blood. 2007;109:4368–75.

    CAS  PubMed Central  PubMed  Google Scholar 

  29. Malin S, McManus S, Cobaleda C, Novatchkova M, Delogu A, Bouillet P, et al. Role of STAT5 in controlling cell survival and immunoglobulin gene recombination during pro-B cell development. Nat Immunol. 2010;11:171–9.

    CAS  PubMed  Google Scholar 

  30. Kemp RA, Pearson CF, Cornish GH, Seddon BP. Evidence of STAT5-dependent and -independent routes to CD8 memory formation and a preferential role for IL-7 over IL-15 in STAT5 activation. Immunol Cell Biol. 2010;88:213–9.

    CAS  PubMed  Google Scholar 

  31. Wang Z, Bunting KD. STAT5 in hematopoietic stem cell biology and transplantation. JAKSTAT. 2013;2:e27159.

    PubMed Central  PubMed  Google Scholar 

  32. Xiao W, Hong H, Kawakami Y, Lowell CA, Kawakami T. Regulation of myeloproliferation and M2 macrophage programming in mice by Lyn/Hck, SHIP, and Stat5. J Clin Invest. 2008;118:924–34.

    CAS  PubMed Central  PubMed  Google Scholar 

  33. Fievez L, Desmet C, Henry E, Pajak B, Hegenbarth S, Garze V, et al. STAT5 is an ambivalent regulator of neutrophil homeostasis. PLoS One. 2007;2:e727.

    PubMed Central  PubMed  Google Scholar 

  34. Dolznig H, Grebien F, Deiner EM, Stangl K, Kolbus A, Habermann B, et al. Erythroid progenitor renewal versus differentiation: genetic evidence for cell autonomous, essential functions of EpoR, Stat5 and the GR. Oncogene. 2006;25:2890–900.

    CAS  PubMed Central  PubMed  Google Scholar 

  35. Socolovsky M, Nam H, Fleming MD, Haase VH, Brugnara C, Lodish HF. Ineffective erythropoiesis in Stat5a(-/-)5b(-/-) mice due to decreased survival of early erythroblasts. Blood. 2001;98:3261–73.

    CAS  PubMed  Google Scholar 

  36. Kerenyi MA, Grebien F, Gehart H, Schifrer M, Artaker M, Kovacic B, et al. Stat5 regulates cellular iron uptake of erythroid cells via IRP-2 and TfR-1. Blood. 2008;112:3878–88.

    CAS  PubMed  Google Scholar 

  37. Wang X, Huang S, Chen JL. Understanding of leukemic stem cells and their clinical implications. Mol Cancer. 2017;16:2.

    PubMed Central  PubMed  Google Scholar 

  38. Schepers H, van Gosliga D, Wierenga AT, Eggen BJ, Schuringa JJ, Vellenga E. STAT5 is required for long-term maintenance of normal and leukemic human stem/progenitor cells. Blood. 2007;110:2880–8.

    CAS  PubMed  Google Scholar 

  39. Linher-Melville K, Singh G. The complex roles of STAT3 and STAT5 in maintaining redox balance: Lessons from STAT-mediated xCT expression in cancer cells. Mol Cell Endocrinol. 2017;451:40–52.

    CAS  PubMed  Google Scholar 

  40. Cumaraswamy AA, Lewis AM, Geletu M, Todic A, Diaz DB, Cheng XR, et al. Nanomolar-potency small molecule inhibitor of STAT5 protein. ACS Med Chem Lett. 2014;5:1202–6.

    CAS  PubMed Central  PubMed  Google Scholar 

  41. Van Etten RA. Aberrant cytokine signaling in leukemia. Oncogene. 2007;26:6738–49.

    PubMed Central  PubMed  Google Scholar 

  42. Nelson EA, Walker SR, Weisberg E, Bar-Natan M, Barrett R, Gashin LB, et al. The STAT5 inhibitor pimozide decreases survival of chronic myelogenous leukemia cells resistant to kinase inhibitors. Blood. 2011;117:3421–9.

    CAS  PubMed Central  PubMed  Google Scholar 

  43. Melo JV, Deininger MW. Biology of chronic myelogenous leukemia—signaling pathways of initiation and transformation. Hematol Oncol Clin North Am. 2004;18:545–68.

    PubMed  Google Scholar 

  44. Warsch W, Grundschober E, Sexl V. Adding a new facet to STAT5 in CML: multitasking for leukemic cells. Cell Cycle. 2013;12:1813–4.

    CAS  PubMed Central  PubMed  Google Scholar 

  45. Warsch W, Kollmann K, Eckelhart E, Fajmann S, Cerny-Reiterer S, Holbl A, et al. High STAT5 levels mediate imatinib resistance and indicate disease progression in chronic myeloid leukemia. Blood. 2011;117:3409–20.

    CAS  PubMed  Google Scholar 

  46. Warsch W, Grundschober E, Berger A, Gille L, Cerny-Reiterer S, Tigan AS, et al. STAT5 triggers BCR-ABL1 mutation by mediating ROS production in chronic myeloid leukaemia. Oncotarget. 2012;3:1669–87.

    PubMed Central  PubMed  Google Scholar 

  47. Chatain N, Ziegler P, Fahrenkamp D, Jost E, Moriggl R, Schmitz-Van de Leur H, et al. Src family kinases mediate cytoplasmic retention of activated STAT5 in BCR-ABL-positive cells. Oncogene. 2013;32:3587–97.

    CAS  PubMed  Google Scholar 

  48. Kaymaz BT, Selvi N, Gokbulut AA, Aktan C, Gunduz C, Saydam G, et al. Suppression of STAT5A and STAT5B chronic myeloid leukemia cells via siRNA and antisense-oligonucleotide applications with the induction of apoptosis. Am J Blood Res. 2013;3:58–70.

    CAS  PubMed Central  PubMed  Google Scholar 

  49. Kosova B, Tezcanli B, Ekiz HA, Cakir Z, Selvi N, Dalmizrak A, et al. Suppression of STAT5A increases chemotherapeutic sensitivity in imatinib-resistant and imatinib-sensitive K562 cells. Leuk Lymphoma. 2010;51:1895–901.

    CAS  PubMed  Google Scholar 

  50. Zhao R, Xing S, Li Z, Fu X, Li Q, Krantz SB, et al. Identification of an acquired JAK2 mutation in polycythemia vera. J Biol Chem. 2005;280:22788–92.

    CAS  PubMed  Google Scholar 

  51. Spivak JL. Polycythemia vera. Curr Treat Options Oncol. 2018;19:12.

    PubMed  Google Scholar 

  52. Trung LQ, Espinoza JL, An DT, Viet NH, Shimoda K, Nakao S. Resveratrol selectively induces apoptosis in malignant cells with the JAK2V617F mutation by inhibiting the JAK2 pathway. Mol Nutr Food Res. 2015;59:2143–54.

    CAS  PubMed  Google Scholar 

  53. Yan D, Hutchison RE, Mohi G. Critical requirement for Stat5 in a mouse model of polycythemia vera. Blood. 2012;119:3539–49.

    CAS  PubMed Central  PubMed  Google Scholar 

  54. Papaemmanuil E, Gerstung M, Bullinger L, Gaidzik VI, Paschka P, Roberts ND, et al. Genomic classification and prognosis in acute myeloid leukemia. N Engl J Med. 2016;374:2209–21.

    CAS  PubMed Central  PubMed  Google Scholar 

  55. Hospital MA, Green AS, Maciel TT, Moura IC, Leung AY, Bouscary D, et al. FLT3 inhibitors: clinical potential in acute myeloid leukemia. Onco Targets Ther. 2017;10:607–15.

    CAS  PubMed Central  PubMed  Google Scholar 

  56. Dorritie KA, McCubrey JA, Johnson DE. STAT transcription factors in hematopoiesis and leukemogenesis: opportunities for therapeutic intervention. Leukemia. 2014;28:248–57.

    CAS  PubMed  Google Scholar 

  57. Walters DK, Mercher T, Gu TL, O’Hare T, Tyner JW, Loriaux M, et al. Activating alleles of JAK3 in acute megakaryoblastic leukemia. Cancer Cell. 2006;10:65–75.

    CAS  PubMed  Google Scholar 

  58. Quentmeier H, MacLeod RA, Zaborski M, Drexler HG. JAK2 V617F tyrosine kinase mutation in cell lines derived from myeloproliferative disorders. Leukemia. 2006;20:471–6.

    CAS  PubMed  Google Scholar 

  59. Bromberg J. Stat proteins and oncogenesis. J Clin Invest. 2002;109:1139–42.

    CAS  PubMed Central  PubMed  Google Scholar 

  60. Tsuruyama T, Nakamura T, Jin G, Ozeki M, Yamada Y, Hiai H. Constitutive activation of Stat5a by retrovirus integration in early pre-B lymphomas of SL/Kh strain mice. Proc Natl Acad Sci USA. 2002;99:8253–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Joliot V, Cormier F, Medyouf H, Alcalde H, Ghysdael J. Constitutive STAT5 activation specifically cooperates with the loss of p53 function in B-cell lymphomagenesis. Oncogene. 2006;25:4573–84.

    CAS  PubMed  Google Scholar 

  62. Tasian SK, Doral MY, Borowitz MJ, Wood BL, Chen IM, Harvey RC, et al. Aberrant STAT5 and PI3K/mTOR pathway signaling occurs in human CRLF2-rearranged B-precursor acute lymphoblastic leukemia. Blood. 2012;120:833–42.

    CAS  PubMed Central  PubMed  Google Scholar 

  63. Walz C, Ahmed W, Lazarides K, Betancur M, Patel N, Hennighausen L, et al. Essential role for Stat5a/b in myeloproliferative neoplasms induced by BCR-ABL1 and JAK2(V617F) in mice. Blood. 2012;119:3550–60.

    CAS  PubMed Central  PubMed  Google Scholar 

  64. Swaminathan S, Klemm L, Park E, Papaemmanuil E, Ford A, Kweon SM, et al. Mechanisms of clonal evolution in childhood acute lymphoblastic leukemia. Nat Immunol. 2015;16:766–74.

    CAS  PubMed Central  PubMed  Google Scholar 

  65. Lee S, Shah T, Yin C, Hochberg J, Ayello J, Morris E, et al. Ruxolitinib significantly enhances in vitro apoptosis in Hodgkin lymphoma and primary mediastinal B-cell lymphoma and survival in a lymphoma xenograft murine model. Oncotarget. 2018;9:9776–88.

    PubMed Central  PubMed  Google Scholar 

  66. Zahn M, Marienfeld R, Melzner I, Heinrich J, Renner B, Wegener S, et al. A novel PTPN1 splice variant upregulates JAK/STAT activity in classical Hodgkin lymphoma cells. Blood. 2017;129:1480–90.

    CAS  PubMed  Google Scholar 

  67. Jona A, Szodoray P, Illes A. Immunologic pathomechanism of Hodgkin’s lymphoma. Exp Hematol. 2013;41:995–1004.

    CAS  PubMed  Google Scholar 

  68. Mata E, Diaz-Lopez A, Martin-Moreno AM, Sanchez-Beato M, Varela I, Mestre MJ, et al. Analysis of the mutational landscape of classic Hodgkin lymphoma identifies disease heterogeneity and potential therapeutic targets. Oncotarget. 2017;8:111386–95.

    PubMed Central  PubMed  Google Scholar 

  69. Scheeren FA, Diehl SA, Smit LA, Beaumont T, Naspetti M, Bende RJ, et al. IL-21 is expressed in Hodgkin lymphoma and activates STAT5: evidence that activated STAT5 is required for Hodgkin lymphomagenesis. Blood. 2008;111:4706–15.

    CAS  PubMed Central  PubMed  Google Scholar 

  70. Scheeren FA, Naspetti M, Diehl S, Schotte R, Nagasawa M, Wijnands E, et al. STAT5 regulates the self-renewal capacity and differentiation of human memory B cells and controls Bcl-6 expression. Nat Immunol. 2005;6:303–13.

    CAS  PubMed  Google Scholar 

  71. Re D, Thomas RK, Behringer K, Diehl V. From Hodgkin disease to Hodgkin lymphoma: biologic insights and therapeutic potential. Blood. 2005;105:4553–60.

    CAS  PubMed  Google Scholar 

  72. Martin-Subero JI, Gesk S, Harder L, Sonoki T, Tucker PW, Schlegelberger B, et al. Recurrent involvement of the REL and BCL11A loci in classical Hodgkin lymphoma. Blood. 2002;99:1474–7.

    CAS  PubMed  Google Scholar 

  73. Rosenwald A, Wright G, Leroy K, Yu X, Gaulard P, Gascoyne RD, et al. Molecular diagnosis of primary mediastinal B cell lymphoma identifies a clinically favorable subgroup of diffuse large B cell lymphoma related to Hodgkin lymphoma. J Exp Med. 2003;198:851–62.

    CAS  PubMed Central  PubMed  Google Scholar 

  74. Kuppers R. Molecular biology of Hodgkin’s lymphoma. Adv Cancer Res. 2002;84:277–312.

    PubMed  Google Scholar 

  75. Moslehi JJ, Deininger M. Tyrosine kinase inhibitor-associated cardiovascular toxicity in chronic myeloid leukemia. J Clin Oncol. 2015;33:4210–8.

    CAS  PubMed Central  PubMed  Google Scholar 

  76. Kayser S, Levis MJ. FLT3 tyrosine kinase inhibitors in acute myeloid leukemia: clinical implications and limitations. Leuk Lymphoma. 2014;55:243–55.

    CAS  PubMed  Google Scholar 

  77. Ren R. Mechanisms of BCR-ABL in the pathogenesis of chronic myelogenous leukaemia. Nat Rev Cancer. 2005;5:172–83.

    CAS  PubMed  Google Scholar 

  78. Guerra B, Martin-Rodriguez P, Diaz-Chico JC, McNaughton-Smith G, Jimenez-Alonso S, Hueso-Falcon I, et al. CM363, a novel naphthoquinone derivative which acts as multikinase modulator and overcomes imatinib resistance in chronic myelogenous leukemia. Oncotarget. 2017;8:29679–98.

    PubMed  Google Scholar 

  79. Szelag M, Wesoly J, Bluyssen HA. Advances in peptidic and peptidomimetic-based approaches to inhibit STAT signaling in human diseases. Curr Protein Pept Sci. 2016;17:135–46.

    CAS  PubMed  Google Scholar 

  80. Wingelhofer B, Maurer B, Heyes EC, Cumaraswamy AA, Berger-Becvar A, de Araujo ED, et al. Pharmacologic inhibition of STAT5 in acute myeloid leukemia. Leukemia. 2018;32:1135–46.

    CAS  PubMed Central  PubMed  Google Scholar 

  81. Sun J, McKallip RJ. Plumbagin treatment leads to apoptosis in human K562 leukemia cells through increased ROS and elevated TRAIL receptor expression. Leuk Res. 2011;35:1402–8.

    CAS  PubMed Central  PubMed  Google Scholar 

  82. Martín-Rodríguez P, Guerra B, Hueso-Falcon I, Aranda-Tavío H, Diaz-Chico J, Quintana J, et al. A novel naphthoquinone-coumarin hybrid that inhibits BCR-ABL1-STAT5 oncogenic pathway and reduces survival in imatinib-resistant Chronic Myelogenous Leukemia cells. Front Pharmacol 2018;9:1546.

  83. Nelson EA, Walker SR, Xiang M, Weisberg E, Bar-Natan M, Barrett R, et al. The STAT5 inhibitor pimozide displays efficacy in models of acute myelogenous leukemia driven by FLT3 mutations. Genes Cancer. 2012;3:503–11.

    CAS  PubMed Central  PubMed  Google Scholar 

  84. Gottesman MM, Fojo T, Bates SE. Multidrug resistance in cancer: role of ATP-dependent transporters. Nat Rev Cancer. 2002;2:48–58.

    CAS  PubMed  Google Scholar 

  85. Tsatsanis C, Spandidos DA. The role of oncogenic kinases in human cancer (Review). Int J Mol Med. 2000;5:583–90.

    CAS  PubMed  Google Scholar 

  86. Campia I, Buondonno I, Castella B, Rolando B, Kopecka J, Gazzano E, et al. An autocrine cytokine/JAK/STAT-signaling induces kynurenine synthesis in multidrug resistant human cancer cells. PLoS One. 2015;10:e0126159.

    PubMed Central  PubMed  Google Scholar 

  87. Hochhaus A, O’Brien SG, Guilhot F, Druker BJ, Branford S, Foroni L, et al. Six-year follow-up of patients receiving imatinib for the first-line treatment of chronic myeloid leukemia. Leukemia. 2009;23:1054–61.

    CAS  PubMed  Google Scholar 

  88. de Lavallade H, Apperley JF, Khorashad JS, Milojkovic D, Reid AG, Bua M, et al. Imatinib for newly diagnosed patients with chronic myeloid leukemia: incidence of sustained responses in an intention-to-treat analysis. J Clin Oncol. 2008;26:3358–63.

    PubMed  Google Scholar 

  89. Reich NC. STATs get their move on. JAKSTAT. 2013;2:e27080.

    PubMed Central  PubMed  Google Scholar 

  90. Stark GR, Cheon H, Wang Y. Responses to cytokines and interferons that depend upon JAKs and STATs. Cold Spring Harb Perspect Biol. 2018;10:pii: a028555.

    Google Scholar 

Download references

Acknowledgements

We thank all the authors that contributed to the understanding of the role of STAT5 in hematopoiesis and oncohematology. We apologize to those whose work deserves to be cited but unfortunately are not quoted because of space restriction. The research program in the author’s lab was supported by grants-in-aid from Spanish Ministry of Economy and Competitivity (MINECO) with the funding of European Regional Development Fund-European Social Fund (SAF2015-65113-C2-2-R) and Alfredo Martin-Reyes Foundation (Arehucas) - FICIC. CR and MMG were supported by postdoctoral grants-in-aid from MINECO - Juan de la Cierva 2017 program and ULPGC 2017, respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlota Recio.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Recio, C., Guerra, B., Guerra-Rodríguez, M. et al. Signal transducer and activator of transcription (STAT)-5: an opportunity for drug development in oncohematology. Oncogene 38, 4657–4668 (2019). https://doi.org/10.1038/s41388-019-0752-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-019-0752-3

This article is cited by

Search

Quick links