FBXW7 is a driver gene in T-cell lymphoblastic neoplasia acting through proteasome degradation of key proto-oncogenes. FBXW7 encodes three isoforms, α, β and γ, which differ only in the N-terminus. In this work, massive sequencing revealed significant downregulation of FBXW7 in a panel of primary T-cell lymphoblastic lymphomas characterised by the absence of mutations in its sequence. We observed that decreased expression mainly affected the FBXW7β isoform and to a lesser extent FBXW7α and may be attributed to the combined effect of epigenetic changes, alteration of upstream factors and upregulation of miRNAs. Transient transfections with miRNA mimics in selected cell lines resulted in a significant decrease of total FBXW7 expression and its different isoforms separately, with the consequent increment of critical substrates and the stimulation of cell proliferation. Transient inhibition of endogenous miRNAs in a T-cell lymphoblastic-derived cell line (SUP-T1) was capable of reversing these proliferative effects. Finally, we show how FBXW7 isoforms display different roles within the cell. Simultaneous downregulation of the α and γ isoforms modulates the amount of CCNE1, whilst the β-isoform alone was found to have a prominent role in modulating the amount of c-MYC. Our data also revealed that downregulation of all isoforms is a sine qua non condition to induce a proliferative pattern in our cell model system. Taking these data into account, potential new treatments to reverse downregulation of all or a specific FBXW7 isoform may be an effective strategy to counteract the proliferative capacity of these tumour cells.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.


  1. 1.

    Welcker M, Clurman BE. FBW7 ubiquitin ligase: a tumour suppressor at the crossroads of cell division, growth and differentiation. Nat Rev Cancer. 2008;8:83–93.

  2. 2.

    Knuutila S, Aalto Y, Autio K, Björkqvist AM, El-Rifai W, Hemmer S, et al. DNA copy number losses in human neoplasms. Am J Pathol. 1999;155:683–94.

  3. 3.

    Spruck CH, Strohmaier H, Sangfelt O, Müller HM, Hubalek M, Müller-Holzner E, et al. hCDC4 gene mutations in endometrial cancer. Cancer Res. 2002;62:4535–9.

  4. 4.

    Ho MS, Tsai P-I, Chien C-T. F-box proteins: the key to protein degradation. J Biomed Sci. 2006;13:181–91.

  5. 5.

    Crusio KM, King B, Reavie LB, Aifantis I. The ubiquitous nature of cancer: the role of the SCF(Fbw7) complex in development and transformation. Oncogene. 2010;29:4865–73.

  6. 6.

    Xu W, Taranets L, Popov N. Regulating Fbw7 on the road to cancer. Semin Cancer Biol. 2016;36:62–70.

  7. 7.

    Akhoondi S, Sun D, von der Lehr N, Apostolidou S, Klotz K, Maljukova A, et al. FBXW7/hCDC4 is a general tumor suppressor in human cancer. Cancer Res. 2007;67:9006–12.

  8. 8.

    Davis RJ, Welcker M, Clurman BE. Tumor suppression by the Fbw7 ubiquitin ligase: mechanisms and opportunities. Cancer Cell. 2014;26:455–64.

  9. 9.

    Baldus CD, Thibaut J, Goekbuget N, Stroux A, Schlee C, Mossner M, et al. Prognostic implications of NOTCH1 and FBXW7 mutations in adult acute T-lymphoblastic leukemia. Haematologica. 2009;94:1383–90.

  10. 10.

    Bonn BR, Rohde M, Zimmermann M, Krieger D, Oschlies I, Niggli F, et al. Incidence and prognostic relevance of genetic variations in T-cell lymphoblastic lymphoma in childhood and adolescence. Blood. 2013;121:3153–60.

  11. 11.

    Callens C, Baleydier F, Lengline E, Ben Abdelali R, Petit A, Villarese P, et al. Clinical impact of NOTCH1 and/or FBXW7 mutations, FLASH deletion, and TCR status in pediatric T-cell lymphoblastic lymphoma. J Clin Oncol. 2012;30:1966–73.

  12. 12.

    Larson Gedman A, Chen Q, Kugel Desmoulin S, Ge Y, LaFiura K, Haska CL, et al. The impact of NOTCH1, FBW7 and PTEN mutations on prognosis and downstream signaling in pediatric T-cell acute lymphoblastic leukemia: a report from the Children’s Oncology Group. Leukemia. 2009;23:1417–25.

  13. 13.

    Neumann M, Vosberg S, Schlee C, Heesch S, Schwartz S, Gökbuget N, et al. Mutational spectrum of adult T-ALL. Oncotarget. 2015;6:2754–66.

  14. 14.

    Park M-J, Taki T, Oda M, Watanabe T, Yumura-Yagi K, Kobayashi R, et al. FBXW7 and NOTCH1 mutations in childhood T cell acute lymphoblastic leukaemia and T cell non-Hodgkin lymphoma. Br J Haematol. 2009;145:198–206.

  15. 15.

    Balamurugan K, Wang J-M, Tsai H-H, Sharan S, Anver M, Leighty R, et al. The tumour suppressor C/EBPδ inhibits FBXW7 expression and promotes mammary tumour metastasis. EMBO J. 2010;29:4106–17.

  16. 16.

    Feng D-D, Zhang H, Zhang P, Zheng Y-S, Zhang X-J, Han B-W, et al. Down-regulated miR-331-5p and miR-27a are associated with chemotherapy resistance and relapse in leukaemia. J Cell Mol Med. 2011;15:2164–75.

  17. 17.

    Kimura T, Gotoh M, Nakamura Y, Arakawa H. hCDC4b, a regulator of cyclin E, as a direct transcriptional target of p53. Cancer Sci. 2003;94:431–6.

  18. 18.

    Mao J-H, Perez-Losada J, Wu D, Delrosario R, Tsunematsu R, Nakayama KI, et al. Fbxw7/Cdc4 is a p53-dependent, haploinsufficient tumour suppressor gene. Nature. 2004;432:775–9.

  19. 19.

    Wang L, Ye X, Liu Y, Wei W, Wang Z. Aberrant regulation of FBW7 in cancer. Oncotarget. 2014;5:2000–15.

  20. 20.

    Akhoondi S, Lindström L, Widschwendter M, Corcoran M, Bergh J, Spruck C, et al. Inactivation of FBXW7/hCDC4-β expression by promoter hypermethylation is associated with favorable prognosis in primary breast cancer. Breast Cancer Res. 2010;12:R105.

  21. 21.

    Cheng Y, Chen G, Martinka M, Ho V, Li G. Prognostic significance of Fbw7 in human melanoma and its role in cell migration. J Invest Dermatol. 2013;133:1794–802.

  22. 22.

    Gu Z, Inomata K, Mitsui H, Horii A. Promoter hypermethylation is not the major mechanism for inactivation of the FBXW7 beta-form in human gliomas. Genes Genet Syst. 2008;83:347–52.

  23. 23.

    Sionov RV, Netzer E, Shaulian E. Differential regulation of FBXW7 isoforms by various stress stimuli. Cell Cycle. 2013;12:3547–54.

  24. 24.

    de Leval L, Bisig B, Thielen C, Boniver J, Gaulard P. Molecular classification of T-cell lymphomas. Crit Rev Oncol Hematol. 2009;72:125–43.

  25. 25.

    Aifantis I, Raetz E, Buonamici S. Molecular pathogenesis of T-cell leukaemia and lymphoma. Nat Rev Immunol. 2008;8:380–90.

  26. 26.

    Van Vlierberghe P, Ferrando A. The molecular basis of T cell acute lymphoblastic leukemia. J Clin Invest. 2012;122:3398–406.

  27. 27.

    Burkhardt B. Paediatric lymphoblastic T-cell leukaemia and lymphoma: one or two diseases? Br J Haematol. 2010;149:653–68.

  28. 28.

    Khoury MP, Bourdon J-C. The isoforms of the p53 protein. Cold Spring Harb Perspect Biol. 2010;2:a000927.

  29. 29.

    Grinkevich VV, Nikulenkov F, Shi Y, Enge M, Bao W, Maljukova A, et al. Ablation of key oncogenic pathways by RITA-reactivated p53 is required for efficient apoptosis. Cancer Cell. 2009;15:441–53.

  30. 30.

    Petitjean A, Mathe E, Kato S, Ishioka C, Tavtigian SV, Hainaut P, et al. Impact of mutant p53 functional properties on TP53 mutation patterns and tumor phenotype: lessons from recent developments in the IARC TP53 database. Hum Mutat. 2007;28:622–9.

  31. 31.

    Correia NC, Durinck K, Leite AP, Ongenaert M, Rondou P, Speleman F, et al. Novel TAL1 targets beyond protein-coding genes: identification of TAL1-regulated microRNAs in T-cell acute lymphoblastic leukemia. Leukemia. 2013;27:1603–6.

  32. 32.

    Huang H, Ma L, Li J, Yu Y, Zhang D, Wei J, et al. NF-κB1 inhibits c-Myc protein degradation through suppression of FBW7 expression. Oncotarget. 2014;5:493–505.

  33. 33.

    Kumar V, Palermo R, Talora C, Campese AF, Checquolo S, Bellavia D, et al. Notch and NF-kB signaling pathways regulate miR-223/FBXW7 axis in T-cell acute lymphoblastic leukemia. Leukemia. 2014;28:2324–35.

  34. 34.

    Mansour MR, Sanda T, Lawton LN, Li X, Kreslavsky T, Novina CD, et al. The TAL1 complex targets the FBXW7 tumor suppressor by activating miR-223 in human T cell acute lymphoblastic leukemia. J Exp Med. 2013;210:1545–57.

  35. 35.

    Zhou Z, He C, Wang J. Regulation mechanism of Fbxw7-related signaling pathways (Review). Oncol Rep. 2015;34:2215–24.

  36. 36.

    Malyukova A, Dohda T, von der Lehr N, Akhoondi S, Akhondi S, Corcoran M, et al. The tumor suppressor gene hCDC4 is frequently mutated in human T-cell acute lymphoblastic leukemia with functional consequences for Notch signaling. Cancer Res. 2007;67:5611–6.

  37. 37.

    Kalender Atak Z, De Keersmaecker K, Gianfelici V, Geerdens E, Vandepoel R, Pauwels D, et al. High accuracy mutation detection in leukemia on a selected panel of cancer genes. PLoS ONE. 2012;7:e38463.

  38. 38.

    Sancho R, Blake SM, Tendeng C, Clurman BE, Lewis J, Behrens A. Fbw7 repression by hes5 creates a feedback loop that modulates Notch-mediated intestinal and neural stem cell fate decisions. PLoS Biol. 2013;11:e1001586.

  39. 39.

    Kourtis N, Moubarak RS, Aranda-Orgilles B, Lui K, Aydin IT, Trimarchi T, et al. FBXW7 modulates cellular stress response and metastatic potential through ​HSF1 post-translational modification. Nat Cell Biol. 2015;17:322–32.

  40. 40.

    Yumimoto K, Akiyoshi S, Ueo H, Sagara Y, Onoyama I, Ueo H, et al. F-box protein FBXW7 inhibits cancer metastasis in a non-cell-autonomous manner. J Clin Invest. 2015;125:621–35.

  41. 41.

    Rocher-Ros V, Marco S, Mao J-H, Gines S, Metzger D, Chambon P, et al. Presenilin modulates EGFR signaling and cell transformation by regulating the ubiquitin ligase Fbw7. Oncogene. 2010;29:2950–61.

  42. 42.

    Trausch-Azar JS, Abed M, Orian A, Schwartz AL. Isoform-specific SCF(Fbw7) ubiquitination mediates differential regulation of PGC-1α. J Cell Physiol. 2015;230:842–52.

  43. 43.

    Puigserver P, Rhee J, Lin J, Wu Z, Yoon JC, Zhang CY, et al. Cytokine stimulation of energy expenditure through p38 MAP kinase activation of PPARgamma coactivator-1. Mol Cell. 2001;8:971–82.

  44. 44.

    Wei X, Tang C, Lu X, Liu R, Zhou M, He D, et al. MiR-101 targets DUSP1 to regulate the TGF-β secretion in sorafenib inhibits macrophage-induced growth of hepatocarcinoma. Oncotarget. 2015;6:18389–405.

  45. 45.

    O’Neil J, Grim J, Strack P, Rao S, Tibbitts D, Winter C, et al. FBW7 mutations in leukemic cells mediate NOTCH pathway activation and resistance to gamma-secretase inhibitors. J Exp Med. 2007;204:1813–24.

  46. 46.

    Thompson BJ, Buonamici S, Sulis ML, Palomero T, Vilimas T, Basso G, et al. The SCFFBW7 ubiquitin ligase complex as a tumor suppressor in T cell leukemia. J Exp Med. 2007;204:1825–35.

  47. 47.

    Tremblay CS, Curtis DJ. The clonal evolution of leukemic stem cells in T-cell acute lymphoblastic leukemia. Curr Opin Hematol. 2014;21:320–5.

  48. 48.

    King B, Trimarchi T, Reavie L, Xu L, Mullenders J, Ntziachristos P, et al. The ubiquitin ligase FBXW7 modulates leukemia-initiating cell activity by regulating MYC stability. Cell. 2013;153:1552–66.

  49. 49.

    Matsuoka S, Oike Y, Onoyama I, Iwama A, Arai F, Takubo K, et al. Fbxw7 acts as a critical fail-safe against premature loss of hematopoietic stem cells and development of T-ALL. Genes Dev. 2008;22:986–91.

  50. 50.

    Onoyama I, Tsunematsu R, Matsumoto A, Kimura T, de Alborán IM, Nakayama K, et al. Conditional inactivation of Fbxw7 impairs cell-cycle exit during T cell differentiation and results in lymphomatogenesis. J Exp Med. 2007;204:2875–88.

  51. 51.

    Gu Z, Mitsui H, Inomata K, Honda M, Endo C, Sakurada A, et al. The methylation status of FBXW7 beta-form correlates with histological subtype in human thymoma. Biochem Biophys Res Commun. 2008;377:685–8.

  52. 52.

    Lai EC. Two decades of miRNA biology: lessons and challenges. RNA. 2015;21:675–7.

  53. 53.

    Katt ME, Placone AL, Wong AD, Xu ZS, Searson PC. In vitro tumor models: advantages, disadvantages, variables, and selecting the right platform. Front Bioeng Biotechnol 2016;4; https://doi.org/10.3389/fbioe.2016.00012.

  54. 54.

    Mavrakis KJ, Van Der Meulen J, Wolfe AL, Liu X, Mets E, Taghon T, et al. A cooperative microRNA-tumor suppressor gene network in acute T-cell lymphoblastic leukemia (T-ALL). Nat Genet. 2011;43:673–8.

  55. 55.

    Mussolin L, Holmes AB, Romualdi C, Sales G, D’Amore ESG, Ghisi M, et al. An aberrant microRNA signature in childhood T-cell lymphoblastic lymphoma affecting CDKN1B expression, NOTCH1 and growth factor signaling pathways. Leukemia. 2014;28:1909–12.

  56. 56.

    Hu J, Wu C, Zhao X, Liu C. The prognostic value of decreased miR-101 in various cancers: a meta-analysis of 12 studies. Onco Targets Ther. 2017;10:3709–18.

  57. 57.

    Welcker M, Orian A, Jin J, Grim JE, Grim JA, Harper JW, et al. The Fbw7 tumor suppressor regulates glycogen synthase kinase 3 phosphorylation-dependent c-Myc protein degradation. Proc Natl Acad Sci USA. 2004;101:9085–90.

  58. 58.

    Swerdlow SH, Campo E, Pileri SA, Harris NL, Stein H, Siebert R, et al. The2016 revision of the World Health Organization classification of lymphoid neoplasms. Blood. 2016;127:2375–90.

  59. 59.

    Andrés-León E, González Peña D, Gómez-López G, Pisano DG. miRGate: a curated database of human, mouse and rat miRNA-mRNA targets. Database (Oxf). 2015;2015:bav035.

  60. 60.

    Mullokandov G, Baccarini A, Ruzo A, Jayaprakash AD, Tung N, Israelow B, et al. High-throughput assessment of microRNA activity and function using microRNA sensor and decoy libraries. Nat Methods. 2012;9:840–6.

  61. 61.

    van Drogen F, Sangfelt O, Malyukova A, Matskova L, Yeh E, Means AR, et al. Ubiquitylation of cyclin E requires the sequential function of SCF complexes containing distinct hCdc4 isoforms. Mol Cell. 2006;23:37–48.

  62. 62.

    Guo D, Ye J, Dai J, Li L, Chen F, Ma D, et al. Notch-1 regulates Akt signaling pathway and the expression of cell cycle regulatory proteins cyclin D1, CDK2 and p21 in T-ALL cell lines. Leuk Res. 2009;33:678–85.

  63. 63.

    Jin HY, Gonzalez-Martin A, Miletic AV, Lai M, Knight S, Sabouri-Ghomi M, et al. Transfection of microRNA Mimics Should Be Used with Caution. Front Genet. 2015;6:340.

Download references


The authors thank the Spanish Biobanks for providing us with the T-LBL samples to elaborate this work. Dr. Grim (Fred Hutchinson Cancer Research Centre) and Dr. Van Santen (CBMSO) for providing us with the CMV-FBXW7 constructs and packing vectors for retroviral transduction, respectively. The Cytometry, Cell Culture and Genomic services of the CBMSO for technical support. We thank Dr. Iria González-Vasconcellos (CBMSO-UAM) for the critical reading of this paper.


Spanish Ministry of Economy and Competitiveness (SAF2015-70561-R; MINECO/FEDER, EU; BES-2013-065740); the Autonomous Community of Madrid, Spain (B2017/BMD-3778; LINFOMAS-CM); the Spanish Association against Cancer (AECC, 2018; PROYE18054PIRI) and the Instituto de Salud Carlos III (ISCIII) (ACCI-CIBERER-17). Institutional grants from the Fundación Ramón Areces and Banco de Santander to the CBMSO are also acknowledged.

Author information

Author notes

  1. These authors contributed equally: Irene Vázquez-Domínguez, Laura González-Sánchez


  1. Centro de Biología Molecular Severo Ochoa (CBMSO), Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid (CSIC-UAM), Madrid, Spain

    • Irene Vázquez-Domínguez
    • , Laura González-Sánchez
    • , Pilar López-Nieva
    • , María Villa-Morales
    • , María Á. Cobos-Fernández
    • , Isabel Sastre
    • , Javier Santos
    •  & José Fernández-Piqueras
  2. IIS Fundación Jiménez Díaz, Madrid, Spain

    • Irene Vázquez-Domínguez
    • , Laura González-Sánchez
    • , Pilar López-Nieva
    • , María Villa-Morales
    • , María Á. Cobos-Fernández
    • , Javier Santos
    • , Pilar Llamas
    • , José L. López-Lorenzo
    •  & José Fernández-Piqueras
  3. Consorcio de Investigación Biomédica de Enfermedades Raras (CIBERER), Madrid, Spain

    • Laura González-Sánchez
    • , Pilar López-Nieva
    • , María Villa-Morales
    • , Javier Santos
    •  & José Fernández-Piqueras
  4. Unidad de Epidemiología Ambiental y Cáncer, Centro Nacional de Epidemiología, Instituto de Salud Carlos III, Madrid, Spain

    • Pablo Fernández-Navarro
  5. Consorcio de Investigación Biomédica de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain

    • Pablo Fernández-Navarro
  6. Centro de Investigación en Nanomateriales y Nanotecnología (CINN-CSIC), Universidad de Oviedo-Principado de Asturias, Oviedo, Spain

    • Mario F. Fraga
  7. Unidad de Epigenética del Cáncer, Instituto Universitario de Oncología del Principado de Asturias (IUOPA), Fundación para la Investigación Biosanitaria de Asturias (FINBA), Instituto de Investigación Sanitaria del Principado de Asturias (ISPA-HUCA), Oviedo, Spain

    • Agustín F. Fernández
  8. Grupo de División Celular y Cáncer, Centro Nacional de Investigaciones Oncológicas (CNIO), Madrid, Spain

    • Marcos Malumbres
    •  & María Salazar-Roa
  9. Unidad de Bioinformática, Biología Estructural y Biocomputación, Centro Nacional de Investigaciones Ocológicas (CNIO), Madrid, Spain

    • Osvaldo Graña-Castro


  1. Search for Irene Vázquez-Domínguez in:

  2. Search for Laura González-Sánchez in:

  3. Search for Pilar López-Nieva in:

  4. Search for Pablo Fernández-Navarro in:

  5. Search for María Villa-Morales in:

  6. Search for María Á. Cobos-Fernández in:

  7. Search for Isabel Sastre in:

  8. Search for Mario F. Fraga in:

  9. Search for Agustín F. Fernández in:

  10. Search for Marcos Malumbres in:

  11. Search for María Salazar-Roa in:

  12. Search for Osvaldo Graña-Castro in:

  13. Search for Javier Santos in:

  14. Search for Pilar Llamas in:

  15. Search for José L. López-Lorenzo in:

  16. Search for José Fernández-Piqueras in:

Conflict of interest

The authors declare that they have no conflict of interest.

Corresponding author

Correspondence to José Fernández-Piqueras.

Supplementary information

About this article

Publication history