Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

CFP suppresses breast cancer cell growth by TES-mediated upregulation of the transcription factor DDIT3

Abstract

Breast cancer is a heterogeneous genetic disease driven by the accumulation of individual mutations per tumor. Whole-genome sequencing approaches have identified numerous genes with recurrent mutations in primary tumors. Although mutations in well characterized tumor suppressors and oncogenes are overrepresented in these sets, the majority of the genetically altered genes have so far unknown roles in breast cancer progression. To improve the basic understanding of the complex disease breast cancer and to potentially identify novel drug targets or regulators of known cancer-driving pathways, we analyzed 86 wild-type genes and 94 mutated variants for their effect on cell growth using a serially constructed panel of MCF7 cell lines. We demonstrate in subsequent experiments that the metal cation transporter CNNM4 regulates growth by induction of apoptosis and identified a tumor suppressive role of complement factor properdin (CFP) in vitro and in vivo. CFP appears to induce the intracellular upregulation of the pro-apoptotic transcription factor DDIT3 which is associated with endoplasmic reticulum-stress response.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Ferlay J, Soerjomataram I, Dikshit R, Eser S, Mathers C, Rebelo M, et al. Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer. 2015;136:E359–386.

    Article  CAS  Google Scholar 

  2. Ferlay J, Steliarova-Foucher E, Lortet-Tieulent J, Rosso S, Coebergh JW, Comber H, et al. Cancer incidence and mortality patterns in Europe: estimates for 40 countries in 2012. Eur J Cancer. 2013;49:1374–403.

    Article  CAS  Google Scholar 

  3. Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144:646–74.

    Article  CAS  Google Scholar 

  4. Nik-Zainal S, Davies H, Staaf J, Ramakrishna M, Glodzik D, Zou X, et al. Landscape of somatic mutations in 560 breast cancer whole-genome sequences. Nature. 2016;534:47–54.

    Article  CAS  Google Scholar 

  5. Sjøblom T, Jones S, Wood LD, Parsons DW, Lin J, Barber TD, et al. The consensus coding sequences of human breast and colorectal cancers. Science. 2006;314:268–74.

  6. Vogelstein B, Papadopoulos N, Velculescu VE, Zhou S, Diaz LA Jr., Kinzler KW. Cancer genome landscapes. Science. 2013;339:1546–58.

    Article  CAS  Google Scholar 

  7. Wood LD, Parsons DW, Jones S, Lin J, Sjoblom T, Leary RJ, et al. The genomic landscapes of human breast and colorectal cancers. Science. 2007;318:1108–13.

    Article  CAS  Google Scholar 

  8. Chittenden TW, Howe EA, Culhane AC, Sultana R, Taylor JM, Holmes C, et al. Functional classification analysis of somatically mutated genes in human breast and colorectal cancers. Genomics. 2008;91:508–11.

    Article  CAS  Google Scholar 

  9. Marcotte R, Sayad A, Brown KR, Sanchez-Garcia F, Reimand J, Haider M, et al. Functional genomic landscape of human breast cancer drivers, vulnerabilities, and resistance. Cell. 2016;164:293–309.

    Article  CAS  Google Scholar 

  10. McDonald ER 3rd, de Weck A, Schlabach MR, Billy E, Mavrakis KJ, Hoffman GR, et al. Project DRIVE: a compendium of cancer dependencies and synthetic lethal relationships uncovered by large-scale, deep RNAi screening. Cell. 2017;170:577–92.

    Article  CAS  Google Scholar 

  11. Wittig-Blaich S, Wittig R, Schmidt S, Lyer S, Bewerunge-Hudler M, Gronert-Sum S, et al. Systematic screening of isogenic cancer cells identifies DUSP6 as context-specific synthetic lethal target in melanoma. Oncotarget. 2017;8:23760–74.

    Article  Google Scholar 

  12. Jiao X, Wood LD, Lindman M, Jones S, Buckhaults P, Polyak K, et al. Somatic mutations in the Notch, NF-KB, PIK3CA, and Hedgehog pathways in human breast cancers. Genes Chromosomes Cancer. 2012;51:480–9.

    Article  CAS  Google Scholar 

  13. Laurberg T, Alsner J, Tramm T, Jensen V, Lyngholm CD, Christiansen PM, et al. Impact of age, intrinsic subtype and local treatment on long-term local-regional recurrence and breast cancer mortality among low-risk breast cancer patients. Acta Oncol. 2017;56:59–67.

    Article  Google Scholar 

  14. Vivian J, Rao AA, Nothaft FA, Ketchum C, Armstrong J, Novak A, et al. Toil enables reproducible, open source, big biomedical data analyses. Nat Biotechnol. 2017;35:314–6.

    Article  CAS  Google Scholar 

  15. Gyorffy B, Lanczky A, Eklund AC, Denkert C, Budczies J, Li Q, et al. An online survival analysis tool to rapidly assess the effect of 22,277 genes on breast cancer prognosis using microarray data of 1,809 patients. Breast Cancer Res Treat. 2010;123:725–31.

    Article  Google Scholar 

  16. Kemper C, Atkinson JP, Hourcade DE. Properdin: emerging roles of a pattern-recognition molecule. Annu Rev Immunol. 2010;28:131–55.

    Article  CAS  Google Scholar 

  17. Kemper C, Mitchell LM, Zhang L, Hourcade DE. The complement protein properdin binds apoptotic T cells and promotes complement activation and phagocytosis. Proc Natl Acad Sci USA. 2008;105:9023–8.

    Article  CAS  Google Scholar 

  18. Pillemer L, Blum L, Lepow IH, Ross OA, Todd EW, Wardlaw AC. The properdin system and immunity. I. Demonstration and isolation of a new serum protein, properdin, and its role in immune phenomena. Science. 1954;120:279–85.

    Article  CAS  Google Scholar 

  19. Xu W, Berger SP, Trouw LA, de Boer HC, Schlagwein N, Mutsaers C, et al. Properdin binds to late apoptotic and necrotic cells independently of C3b and regulates alternative pathway complement activation. J Immunol. 2008;180:7613–21.

    Article  CAS  Google Scholar 

  20. Mi H, Muruganujan A, Casagrande JT, Thomas PD. Large-scale gene function analysis with the PANTHER classification system. Nat Protoc. 2013;8:1551–66.

    Article  Google Scholar 

  21. Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA, et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci USA. 2005;102:15545–50.

    Article  CAS  Google Scholar 

  22. Kroemer G, Marino G, Levine B. Autophagy and the integrated stress response. Mol Cell. 2010;40:280–93.

    Article  CAS  Google Scholar 

  23. Wouters BG, Koritzinsky M. Hypoxia signalling through mTOR and the unfolded protein response in cancer. Nat Rev Cancer. 2008;8:851–64.

    Article  CAS  Google Scholar 

  24. Pluquet O, Pourtier A, Abbadie C. The unfolded protein response and cellular senescence. A review in the theme: cellular mechanisms of endoplasmic reticulum stress signaling in health and disease. Am J Physiol Cell Physiol. 2015;308:C415–425.

    Article  CAS  Google Scholar 

  25. Appenzeller-Herzog C, Hall MN. Bidirectional crosstalk between endoplasmic reticulum stress and mTOR signaling. Trends Cell Biol. 2012;22:274–82.

    Article  CAS  Google Scholar 

  26. Schröder M. Endoplasmic reticulum stress responses. Cell Mol Life Sci. 2008;65:862–94.

    Article  Google Scholar 

  27. Kretowski R, Borzym-Kluczyk M, Stypulkowska A, Branska-Januszewska J, Ostrowska H, Cechowska-Pasko M. Low glucose dependent decrease of apoptosis and induction of autophagy in breast cancer MCF-7 cells. Mol Cell Biochem. 2016;417:35–47.

    Article  CAS  Google Scholar 

  28. Luo B, Lee AS. The critical roles of endoplasmic reticulum chaperones and unfolded protein response in tumorigenesis and anticancer therapies. Oncogene. 2013;32:805–18.

    Article  CAS  Google Scholar 

  29. End C, Bikker F, Renner M, Bergmann G, Lyer S, Blaich S, et al. DMBT1 functions as pattern-recognition molecule for poly-sulfated and poly-phosphorylated ligands. Eur J Immunol. 2009;39:833–42.

    Article  CAS  Google Scholar 

  30. Mollenhauer J, Herbertz S, Holmskov U, Tolnay M, Krebs I, Merlo A, et al. DMBT1 encodes a protein involved in the immune defense and in epithelial differentiation and is highly unstable in cancer. Cancer Res. 2000;60:1704–10.

    CAS  PubMed  Google Scholar 

  31. Müller H, End C, Weiss C, Renner M, Bhandiwad A, Helmke BM, et al. Respiratory deleted in malignant brain tumours 1 (DMBT1) levels increase during lung maturation and infection. Clin Exp Immunol. 2008;151:123–9.

    Article  Google Scholar 

  32. Flamant L, Roegiers E, Pierre M, Hayez A, Sterpin C, De Backer O, et al. TMEM45A is essential for hypoxia-induced chemoresistance in breast and liver cancer cells. BMC Cancer. 2012;12:391.

    Article  CAS  Google Scholar 

  33. Guo J, Chen L, Luo N, Yang W, Qu X, Cheng Z. Inhibition of TMEM45A suppresses proliferation, induces cell cycle arrest and reduces cell invasion in human ovarian cancer cells. Oncol Rep. 2015;33:3124–30.

    Article  CAS  Google Scholar 

  34. Biunno I, Cattaneo M, Orlandi R, Canton C, Biagiotti L, Ferrero S, et al. SEL1L a multifaceted protein playing a role in tumor progression. J Cell Physiol. 2006;208:23–38.

    Article  CAS  Google Scholar 

  35. Orlandi R, Cattaneo M, Troglio F, Casalini P, Ronchini C, Menard S, et al. SEL1L expression decreases breast tumor cell aggressiveness in vivo and in vitro. Cancer Res. 2002;62:567–74.

    CAS  PubMed  Google Scholar 

  36. Zhu J, Li X, Kong X, Moran MS, Su P, Haffty BG, et al. Testin is a tumor suppressor and prognostic marker in breast cancer. Cancer Sci. 2012;103:2092–101.

    Article  CAS  Google Scholar 

  37. Forbes SA, Beare D, Gunasekaran P, Leung K, Bindal N, Boutselakis H, et al. COSMIC: exploring the world’s knowledge of somatic mutations in human cancer. Nucleic Acids Res. 2015;43:D805–811.

    Article  CAS  Google Scholar 

  38. Uhlen M, Fagerberg L, Hallstrom BM, Lindskog C, Oksvold P, Mardinoglu A, et al. Proteomics. Tissue-based map of the human proteome. Science. 2015;347:1260419.

    Article  Google Scholar 

  39. Guo D, Ling J, Wang MH, She JX, Gu J, Wang CY. Physical interaction and functional coupling between ACDP4 and the intracellular ion chaperone COX11, an implication of the role of ACDP4 in essential metal ion transport and homeostasis. Mol Pain. 2005;1:15.

    Article  Google Scholar 

  40. Yamazaki D, Funato Y, Miura J, Sato S, Toyosawa S, Furutani K. et al. Basolateral Mg2+extrusion via CNNM4 mediates transcellular Mg2+transport across epithelia: a mouse model. PLoS Genet. 2013;9:e1003983

    Article  Google Scholar 

  41. Funato Y, Yamazaki D, Mizukami S, Du L, Kikuchi K, Miki H. Membrane protein CNNM4-dependent Mg2+efflux suppresses tumor progression. J Clin Invest. 2014;124:5398–410.

    Article  Google Scholar 

  42. Kostantin E, Hardy S, Valinsky WC, Kompatscher A, de Baaij JH, Zolotarov Y, et al. Inhibition of PRL-2.CNNM3 protein complex formation decreases breast cancer proliferation and tumor growth. J Biol Chem. 2016;291:10716–25.

    Article  CAS  Google Scholar 

  43. Gulerez I, Funato Y, Wu H, Yang M, Kozlov G, Miki H, et al. Phosphocysteine in the PRL-CNNM pathway mediates magnesium homeostasis. EMBO Rep. 2016;17:1890–1900.

    Article  CAS  Google Scholar 

  44. Parry DA, Mighell AJ, El-Sayed W, Shore RC, Jalili IK, Dollfus H, et al. Mutations in CNNM4 cause Jalili syndrome, consisting of autosomal-recessive cone-rod dystrophy and amelogenesis imperfecta. Am J Hum Genet. 2009;84:266–73.

    Article  CAS  Google Scholar 

  45. Pio R, Ajona D, Lambris JD. Complement inhibition in cancer therapy. Semin Immunol. 2013;25:54–64.

    Article  CAS  Google Scholar 

  46. Schlesinger M, Broman I, Lugassy G. The complement system is defective in chronic lymphatic leukemia patients and in their healthy relatives. Leukemia. 1996;10:1509–13.

    CAS  PubMed  Google Scholar 

  47. Al-Rayahi IA, Browning MJ, Stover C. Tumour cell conditioned medium reveals greater M2 skewing of macrophages in the absence of properdin. Immun Inflamm Dis. 2017;5:68–77.

    Article  CAS  Google Scholar 

  48. Fijen CA, van den Bogaard R, Schipper M, Mannens M, Schlesinger M, Nordin FG, et al. Properdin deficiency: molecular basis and disease association. Mol Immunol. 1999;36:863–7.

    Article  CAS  Google Scholar 

  49. Park SH, Choi HJ, Yang H, Do KH, Kim J, Kim HH, et al. Two in-and-out modulation strategies for endoplasmic reticulum stress-linked gene expression of pro-apoptotic macrophage-inhibitory cytokine 1. J Biol Chem. 2012;287:19841–55.

    Article  CAS  Google Scholar 

  50. List M, Schmidt S, Trojnar J, Thomas J, Thomassen M, Kruse TA, et al. Efficient sample tracking with OpenLabFramework. Sci Rep. 2014;4:4278.

    Article  Google Scholar 

  51. Bathum L, Hansen H, Teisner B, Koch C, Garred P, Rasmussen K, et al. Association between combined properdin and mannose-binding lectin deficiency and infection with Neisseria meningitidis. Mol Immunol. 2006;43:473–9.

    Article  CAS  Google Scholar 

  52. Felsher DW, Zetterberg A, Zhu J, Tlsty T, Bishop JM. Overexpression of MYC causes p53-dependent G2 arrest of normal fibroblasts. Proc Natl Acad Sci USA. 2000;97:10544–8.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank Kerstin Mollenhauer, Anni Schmidt Pedersen and Jette Brandt for their technical assistance. We further thank Bernd Korn for his support in cloning and Guido Posern for support during revision. The work was supported by the Lundbeck Foundation (Grant NanoCAN), and the Rektorspuljen SDU2020 Program (Grant: DAWN-2020); Region Syddanmarks Ph.D.- and Forskningspulje; Fonden Til Lægevidenskabens Fremme; MIO project of the OUH Frontlinjepuljen; Aase og Ejnar Danielsens Fond; Torben og Alice Frimodts Fond, Kong Christian den Tiendes Fond, Brødrene Hartmanns Fond, Fru Astrid Thaysens Legat for Lægevidenskabelig Grundforskning, Grosserer A. V. Lykfeldt og Hustrus Legat, Familien Hede Nielsens Fond, Oda og Hans Svenningsens Fond, Lippmann Fonden and Gangsted Fonden. The work was further support by scholarships granted by Kræftens Bekæmpelse and was co-financed by the INTERREG 4A-program Syddanmark-Schleswig-K.E.R.N. with funds from The European Regional Development Fund. The funding sources had no role in study design, collection of data and analysis, nor in the decision to publish, or preparation of the article.

Author contributions

Conceptualization and methodology, IB, CM, and JM; Investigation, IB, CM, DS, HP, AMJ, SDS, SS, PLH, HC, CC, SBO, MMB, and AR; Formal analysis, ML and MT; Resources, JM, TAK, SWKH, and PK; Writing—original draft, IB and CM; Writing—review & editing, IB, CM, ML, PK, SWKH, HP, PLH, AMJ, and AR; Funding acquisition, IB, CM, ML, SDS, MMB, and JM; Supervision, IB, CM, and JM.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ines Block.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

GRANT SUPPORT The work was supported by the Lundbeck Foundation (Grant NanoCAN), and the Rektorspuljen SDU2020 Program (Grant: DAWN-2020); Region Syddanmarks Ph.D.- and Forskningspulje; Fonden Til Lægevidenskabens Fremme; MIO project of the OUH Frontlinjepuljen; Aase og Ejnar Danielsens Fond; Torben og Alice Frimodts Fond, Kong Christian den Tiendes Fond, Brødrene Hartmanns Fond, Fru Astrid Thaysens Legat for Lægevidenskabelig Grundforskning, Grosserer A. V. Lykfeldt og Hustrus Legat, Familien Hede Nielsens Fond, Oda og Hans Svenningsens Fond, Lippmann Fonden and Gangsted Fonden. The work was further support by scholarships granted by Kræftens Bekæmpelse and was co-financed by the INTERREG 4A-program Syddanmark-Schleswig-K.E.R.N. with funds from The European Regional Development Fund. The funding sources had no role in study design, collection of data and analysis, nor in the decision to publish, or preparation of the article.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Block, I., Müller, C., Sdogati, D. et al. CFP suppresses breast cancer cell growth by TES-mediated upregulation of the transcription factor DDIT3. Oncogene 38, 4560–4573 (2019). https://doi.org/10.1038/s41388-019-0739-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-019-0739-0

This article is cited by

Search

Quick links