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Abstract
Lysine methylation of histones and non-histone substrates by the SET domain containing protein lysine methyltransferase
(KMT) G9a/EHMT2 governs transcription contributing to apoptosis, aberrant cell growth, and pluripotency. The positioning of
chromosomes within the nuclear three-dimensional space involves interactions between nuclear lamina (NL) and the lamina-
associated domains (LAD). Contact of individual LADs with the NL are dependent upon H3K9me2 introduced by G9a. The
mechanisms governing the recruitment of G9a to distinct subcellular sites, into chromatin or to LAD, is not known. The cyclin
D1 gene product encodes the regulatory subunit of the holoenzyme that phosphorylates pRB and NRF1 thereby governing cell-
cycle progression and mitochondrial metabolism. Herein, we show that cyclin D1 enhanced H3K9 dimethylation though direct
association with G9a. Endogenous cyclin D1 was required for the recruitment of G9a to target genes in chromatin, for G9a-
induced H3K9me2 of histones, and for NL-LAD interaction. The finding that cyclin D1 is required for recruitment of G9a to
target genes in chromatin and for H3K9 dimethylation, identifies a novel mechanism coordinating protein methylation.

Introduction

Histone methylation is dynamically regulated by histone
methyltransferases (HKMTs) and histone lysine demethy-
lases [1]. Both histone and non-histone substrates have been
reported for HKMTs therefore these enzymes are referred to
as lysine methyltransferases (KMTs) and lysine demethy-
lases. The key KMTs include G9a/KMT1C, which methy-
lates histone H1 and H3 (K9 and K27) in vitro. The Su(var)
3-9-Enhancer of zeste-Trithorax (SET) domain of Suv39h1/
KMT1a encodes the catalytic domain, which governs lysine
methylation [2]. Both Suv39h1 and G9a catalyze mono-,
di-, and tri-methylation reactions on H3K9 [3, 4]. In mouse
and human, the G9a/GLP enzymatic complex di-methylates
H3K9. G9a is therein essential for both the stability of the
complex and the catalytic function [5]. G9a associates with
heterochromatin protein 1 (HP1) to regulate chromatin
binding and association with methylated histones [6]. Dis-
tinct domains of G9a, including the Cys-rich region (CYS),
the ankyrin repeat (ANK), and the SET domain, facilitate
interactions with either methylated histones or associated
proteins. The recruitment of HP1α and HP1β to pericen-
tromeric heterochromatin is dependent upon H3K9 methy-
lation by Suv39h. HP1α then binds to H3K9me2 and
H3K9me3. The association of G9a with HP1 to form
complexes increases the automethylation of G9a [6–8]. The
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association of the multi H3K9 methyl-binding protein
modules, which includes HP1 and G9a, may result in the
spreading of H3K9me2 marks [9]. The non-histone sub-
strates of G9a include p53, Wiz, CDYL1, ACINUS, and
Reptin [10–13].

The nuclear lamina (NL) interacts with genomic regions
referred to as lamina-associated domains (LADs) and G9a
plays a critical role in NL-associated large chromatin
domain interactions. Recent evidence suggests the contact
of NL with LADs is linked to H3K9 dimethylation intro-
duced by G9a [14]. G9a thereby contributes to architectural
changes of chromosomes and in turn participates in gene
regulation. Approximately 40% of the mammalian genome
are covered by LADs. LAD interactions with NL may
provide structural impediments that positioning the chro-
mosomes. The mechanisms governing LAD-NL association
is contingent upon long (GA)n repeats [15]. Furthermore,
H3K9 methylation contributes to NL anchoring to genomic
loci [16]. The mechanisms coordinating the interactions
between LAD and NL remain to be determined. Because a
variety of diseases have been linked to dysfunctional
interaction of NL-associated proteins and chromatin com-
ponents [17], it remains important to discern the mechanism
governing these interactions.

Recently, a new approach was developed for studying
NL-LAD interactions using an epigenetic tag of DNA
adenine-6-methylation. DNA in contact with the NL
becomes adenine methylated via an Escherichia coli DNA
adenine methyltransferase and Lamin B fusion protein.
Because m6A is a stable modification, DNA in contact with
the NL can be labeled and thereby visualized in living cells.
Using this approach, G9a was shown to control H3K9
dimethylation, which was critical for LAD-NL interactions
and thereby determined the contact of LADs with the NL
[14]. G9a is known to colocalize with the replication foci
during DNA synthesis, and shortly prior to incorporation
into chromatin, G9a complexes deposit K9me2 marks on
H3 [18, 19].

The cyclin D1 gene encodes a labile regulatory subunit
of the holoenzyme that phosphorylates and inactivates the
retinoblastoma (pRb) [20] and NRF1 [21] proteins thereby
coordinating both the DNA synthetic phase of the cell cycle
and mitochondrial biogenesis [22]. Several recent studies
have implicated cyclin D1 in the regulation of gene tran-
scription [23]. Initial studies demonstrated cyclin D1 altered
both transcription factor recruitment and local chromatin
acetylation in chromatin immunoprecipitation (ChIP) assays
[24]. Such findings were consistent with the binding of
cyclin D1 to histone acetylases and deacetylases in vitro
[25–28]. Cyclin D1 was subsequently identified in a DNA
chromatin-associated pool linked to the regulation of gene
expression, including the repression of PPARγ [27, 29] and
unbiased genome-wide ChIP-Seq demonstrated cyclin D1

binds to the regulatory regions of genes governing chro-
mosomal instability [30]. Cyclin D1 is known to either
activate or repress gene expression, and more than 30
transcription factors and several co-activators interacting
with cyclin D1 have been characterized. The regulation of
gene expression by cyclin D1 involves a helix-turn-helix
(HTH) domain between aa179 and 241 [27]. The biological
significance of endogenous cyclin D1 in governing gene
expression in vivo was evidenced by recent studies in which
cyclin D1 genetic deletion attenuated both estradiol- and
androgen-dependent gene expression in the mammary gland
[31] and prostate, respectively [32].

We show herein that cyclin D1 governs H3K9 dimethy-
lation of histone substrates and determines the recruitment of
G9a into chromatin at gene targets. Cyclin D1 enhanced
H3K9me2 in tissue culture and in vivo in multigenic mice.
Endogenous cyclin D1 bound the predominant cellular
H3K9 methyltransferase G9a. The previously defined HTH
transcriptional regulatory domain of cyclin D1 was required
for association with G9a. Cyclin D1 binding to G9a required
the CYS domain of G9a. Cyclin D1 and G9a bound com-
mon genes in genome-wide ChIP-Seq analyses, with
enrichment at the LAD borders. Using m6A-tracer, we show
cyclin D1 is required for the G9a-dependent association of
NL with LAD. Collectively, these studies define a novel
function for cyclin D1, to associate with G9a and thereby
promote H3K9 dimethylation, which in turn plays an
essential role in the positioning of interphase chromosomes.

Results

The cyclin D1 HTH domain is required for binding to
G9a

The HMT G9a is responsible for the majority of H3K9me2
in cells. In order to determine whether the induction of
H3K9me2 at specific chromatin elements by cyclin D1
involved association of cyclin D1 with G9a, immune-
precipitation was conducted of endogenous cyclin D1 in the
human MCF-7 breast cancer cell line. Cyclin D1 immu-
noprecipitation (IP) co-precipitated pRB, Cdk4, and G9a
(Fig. 1a). Immunofluorescence staining suggested that
cyclin D1 (green) co-localized with G9a (red) in wild-type
mouse embryonic fibroblasts (MEFs) in a subset of cells
(Fig. 1b, yellow dots).

In order to determine which domain of cyclin D1 binds
to G9a we conducted IP-western blotting of cells transfected
with expression vectors encoding GAL4-tagged cyclin D1
or mutants of cyclin D1 (Fig. 1c) and a vector encoding
FLAG-tagged wild-type G9a (Fig. 1d, e). IP with an anti-
FLAG antibody precipitated FLAG-tagged G9a and the
associated GAL4-cyclin D1 fusion protein. Point mutation
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of cyclin D1 at the amino acid K112, which is known to
reduce binding of Cdk4/Cdk6, did not affect G9a associa-
tion (Fig. 1d). As the cyclin D1KE mutant is defective in
forming an active kinase function, this finding suggests G9a
binding is distinct from the kinase function of cyclin D1.
Similarly, the cyclin D1GH mutant, which abrogates pRb
binding, did not affect G9a association (Fig. 1d). We next
examined the series of deletion mutants of cyclin D1. The
N6 mutant was capable of binding G9a, however, the C2

mutant, which was expressed abundantly, failed to bind G9a
(Fig. 1e, asterisks). The C4 and C6 mutants of cyclin D1
bound G9a. Because the amino terminal fragment of cyclin
D1 (N6) and the C-terminal fragment (C4) were capable of
binding G9a together, these studies demonstrate that the
amino terminus and the amino-acid residues between 178
and 242, corresponding to the previously described cyclin
D1 transcriptional regulatory domain [27], are both required
for G9a binding in IP-western blotting.
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Quantitation of the relative association between G9a and
cyclin D1 was conducted. In order to define the domains of
G9a required for cyclin D1 association in IP-western blot-
ting, a series of G9a expression vectors were deployed
(Fig. 1f). The FLAG-tagged G9a expression vectors were
co-expressed with cyclin D1WT. The FLAG IP precipitated
G9a and the co-associated cyclin D1 was detected by
western blot (Fig. 1g). The G9a mutant 1-425 failed to bind
cyclin D1 (Fig. 1g), whereas the G9a mutant 1-685
including the CYS domain was capable of binding cyclin
D1 (Fig. 1g). The G9a mutant Del 426-922 without the
CYS and ANK domains significantly decreased binding
to cyclin D1 (Fig. 1g, h, G9a FL vs 1-425, P < 0.01; G9a FL
vs Del 426-922, P= 0.01) (n= 3). Together, these studies
demonstrate that the G9a CYS domain and the cyclin D1
HTH domain are required for co-association.

Cyclin D1 maintains H3K9 dimethylation in cultured
cells and in vivo

In order to determine the role of endogenous cyclin D1 in
determining cellular H3K9me2, immunofluorescence was
conducted. We examined H3K9me2, comparing the cyclin
D1+/+, cyclin D1−/− MEFs, and cyclin D1−/− MEFs rescued
with cyclin D1 or vector control (Fig. 2a, b). The relative
abundance of H3K9me2 was reduced in cyclin D1−/− cells
compared to wild-type controls. Introducing cyclin D1 into
cyclin D1−/− MEFs increased H3K9me2 compared to the
vector control cells (Fig. 2a, b). Introducing a point mutation

of the amino acid K112 (KE mutant), which results in reduced
binding of cdk4/cdk6 and impaired kinase activity when
introduced into cyclin D1−/− MEFs, also enhanced
H3K9me2 staining to a similar level as cyclin D1 wild type
(Supplemental Fig. 1).

In order to determine whether endogenous cyclin D1
maintained H3K9me2 in vivo, transgenic mice were
used. Cyclin D1fl/fl mice were intercrossed with
Rosa26CreERT2/CreERT2 transgenic mice, and adult mice were
treated with tamoxifen to induce Cre expression and thereby
cyclin D1 gene deletion (Fig. 2c). After 4 weeks of tamoxifen
washout, immunohistochemical staining of H3K9me2 and
cyclin D1 was conducted, demonstrating a substantial reduc-
tion in H3K9me2 upon deletion of the cyclin D1 gene
(Fig. 2d, e). Cyclin D1 gene deletion was verified in these mice
by genomic analysis and by immunohistochemical staining for
cyclin D1 (Supplemental Fig. 2).

The cyclin D1 HTH domain is required for induction
of H3K9me2

In order to determine whether the mutant of cyclin D1 that
was defective in binding to G9a was capable of inducing
H3K9me2, a comparison was made between the cyclin
D1WT and the cyclin D1C2 mutant, which is defective in
binding G9a (Fig. 1c, e). Transduction of cyclin D1−/−

MEFs with the retroviral vector encoding cyclin D1WT

enhanced H3K9me2, whereas transduction with the vector
encoding a cyclin D1 mutant defective in binding G9a
(cyclin D1C2) failed to rescue H3K9me2 (Fig. 3a, b).
Western blot analysis of the cyclin D1WT and cyclin D1C2

mutant transduced cyclin D1−/− MEFs for cyclin D1 protein
demonstrated the presence of the cyclin D1WT and cyclin
D1C2 mutant protein (Fig. 3c). The abundance of H3K9me2
was induced greater than twofold by cyclin D1WT but not by
cyclin D1C2 mutant when normalized for protein loading
abundance with Lamin B1 (Fig. 3c).

H3K9 dimethylation by G9a requires cyclin D1

Given that G9a is crucial for H3K9me2 [5] we confirmed
that deficiency of the G9a gene in MEFs (G9a−/−) resulted
in reduction of H3K9me2 levels compared to the control
(G9afl/fl) cells by immunofluorescence staining (Fig. 4a, b)
and western blotting (Fig. 4c, d, G9afl/fl vs G9a−/−, P < 0.01,
S.E., short exposure, L.E., long exposure). Introducing G9a
into G9a−/− MEFs increased H3K9me2 by immuno-
fluorescence compared to the vector control cells (Fig. 4a,
b) and by western blot analysis (Fig. 4c, d, G9a−/− plus
vector vs G9a−/− plus G9aWT, P < 0.01). Introduction of
G9a short hairpin RNA (shRNA) into MCF-7 cells reduced
G9a and H3K9me2 levels (Fig. 4e). In order to examine
further the requirement for cyclin D1 in G9a function, we

Fig. 1 Cyclin D1 binds G9a. a Cyclin D1 immune-precipitation was
conducted in MCF-7 cells, with subsequent western blotting to the
proteins indicated. b Confocal microscopy of immunofluorescence for
G9a (red), cyclin D1 (green), and nuclear staining with 4′,6-diamidino-
2-phenylindole (DAPI; blue) in cyclin D1+/+ mouse embryonic
fibroblasts (MEFs). Scale bar, 20 μm. c Schematic representation of
GAL4-tagged cyclin D1 expression vectors with relative G9a binding.
d Immunoprecipitation using an antibody to the FLAG-tag of G9a
with sequential western blot to the GAL4 for GAL4-cyclin D1 in
293T cells co-transfected with FLAG-tagged G9a and GAL4-tagged
cyclin D1 wild type, KE mutant, and GH mutant. e Immunoprecipi-
tation using an antibody to the FLAG-tag of G9a and sequential
western blotting to GAL4 for GAL4-cyclin D1 wild type and trun-
cation mutants. Note the relative abundance of C2 and C4 in the input
and lack of cyclin D1 in C2 but not in C4 by FLAG immunopreci-
pitation (IP)-western blot. f Schematic representation of FLAG-tagged
G9a expression vectors with relative cyclin D1 binding. g IP-western
after precipitation with anti-FLAG antibody for FLAG-tagged G9a in
sequential western blotting to the GAL4 for GAL4-cyclin D1 in
293T cells co-transfected with GAL4-tagged cyclin D1 and FLAG-
tagged G9a wild type and truncation mutants. h Quantitation of
FLAG-tagged G9a binding to GAL4-tagged cyclin D1 in 293T cells
from three independent experiments. The binding amount of FLAG-
tagged wild-type G9a to GAL4-tagged cyclin D1 in each experiment
was set as 1. The data are shown as mean ± SEM. *P= 0.01; **P <
0.01 (n= 3)
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conducted cyclin D1 siRNA studies in G9a−/− or G9a−/−

MEF rescued with a G9a expression vector. H3K9me2 was
decreased in G9a−/− cells. Addition of G9a rescued
H3K9me2 (Fig. 4f, g). Cyclin D1 small interfering RNA

(siRNA) treatment reduced H3K9me2 in G9a−/− MEF
rescued with a G9a expression vector. In G9a−/− plus
vector cells no further decrease in H3K9me2 was observed
with cyclin D1 siRNA compared to control siRNA

A

Cyclin D1wt/wt- Cre-ERT2/Cre-ERT2

(Cyclin D1+/+)
Cyclin D1fl/fl;-Cre-ERT2/Cre-ERT2

(Cyclin D1-/-)

IHC of H3K9me2 in mammary gland

p<0.01

0
5

10
15
20
25
30

D
1+

/+

D
1-

/-R
el

at
iv

e 
In

te
ns

ity
 

(x
10

4 /c
el

l)

cy
cl

in
D

1+
/+

 
cy

cl
in

D
1-

/-
cy

cl
in

D
1-

/-

G
FP

cy
cl

in
D

1-
/-

cy
cl

in
D

1W
T

H3K9me2 DAPI mergeMEF enlarge

B
ROSA26-CreERT2 

Cyclin D1fl/fl Cyclin D1-/-

ROSA26-CreERT2 
Cyclin D1wt/wt

Cyclin D1+/+

Tamoxifen 
(5 Days) then 4 weeks washout 

D E

0

25

50

75

100

D
1+

/+

D
1-

/-

p<0.001p<0.001

D
1-

/-

G
FP D
1-

/ -

D
1w

tM
ea

n 
Fl

uo
re

sc
en

ce
In

te
si

ty
of

 H
3K

9m
e2

C

Fig. 2 Cyclin D1 augments
H3K9me2. a Confocal
microscopy of
immunofluorescence for
H3K9me2 (red) and nuclear
staining with 4′,6-diamidino-2-
phenylindole (DAPI; blue) in
cyclin D1 wild-type and
knockout mouse embryonic
fibroblasts (MEFs), and cyclin
D1−/− MEFs rescued with
MSCV-cyclin D1-IRES-GFP or
vector control. Images
demonstrate the reduction in
H3K9me2 in cyclin D1−/− cells.
Scale bar, 20 μm with (b)
quantitation of mean
fluorescence shown as mean ±
SEM. c Schematic
representation of transgenic
paradigm. d
Immunohistochemical staining
for H3K9me2 in the mammary
gland of transgenic mice in
which the cyclin D1 gene was
deleted through Cre excision in
the adult mammary glands. e
The quantitation of H3K9me2 is
shown as mean ± SEM for n=
10 separate mammary glands
from two cyclin D1WT

(tamoxifen-treated cyclin
D1wt/wt;-Rosa26CreERT2/CreERT2

transgenic mice) and three
cyclin D1−/− mice (tamoxifen-
treated cyclin D1fl/fl;-
Rosa26CreERT2/CreERT2 transgenic
mice)

4236 Z. Li et al.



treatment (Fig. 4f, g). Thus, endogenous cyclin D1 is
required for the ability of G9a to introduce H3K9me2.

Cyclin D1 and G9a binding by ChIP-Seq overlap
common gene regions

We next examined occupancy of G9a and cyclin D1 in the
genome by comparing ChIP-Seq [30, 33]. G9a binding and
cyclin D1 binding, aligned with chromosomal location
demonstrated G9a and cyclin D1 were not recruited to the X
and Y chromosomes (Supplemental Fig. 3). Sets of genes
bound by G9a in mouse embryonic stem cells (mESCs) and
cyclin D1 in MEFs were obtained from published ChIP-Seq
data [30, 33]. A total of 16,173 G9a-bound genes (GEO
database (accession number: GSM1215219)) and 2840
cyclin D1-bound genes were identified (Fig. 5a). Although
the data sets were derived from different cell types, 744
genes were identified that were overlapping for both cyclin

D1 and G9a binding (Fig. 5a). Thus, 744/16,173 G9a-
binding sites are coincident for cyclin D1 (4.6 %) and 744/
2840 of the cyclin D1-binding sites are coincident for G9a
binding (26.2 %, P < 0.01).

The Gene Ontology (GO) functional terms of the genes
that bound both cyclin D1 and G9a in ChIP were enriched
for genes involved in cellular functions including reg-
ulation of cell growth, oncogenesis, apoptosis, and neu-
ronal function (Fig. 5b). From within the overlapping
cyclin D1/G9a ChIP-Seq group several genes were chosen
for further analysis based on their known role in apoptosis
and cellular proliferation (Mdm4, Pttg1, and c-Myc) (Fig.
5c–k). Neuronal migration and function has been shown
to involve cyclin D1 [34, 35] and G9a [36], therefore
seven genes were selected from the literature as shown to
be linked to neurogenesis through altered expression in
mouse models (Cacna2d4, Dlgap3, Glra1, Scn2a1,
Kcne2, Stx3, and Sncb (Supplemental Figs. 4 and 5)). For
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Fig. 4 G9a dimethylation of H3K9 requires endogenous cyclin D1. a,
b Confocal microscopy of immunofluorescence for H3K9me2 (red)
and nuclear staining with DAPI (blue) in G9afl/fl and G9a−/− mouse
embryonic fibroblasts (MEFs), and G9a−/− MEFs rescued with G9aWT

or vector control. Images show the reduction in H3K9me2 in G9a−/−

cells (a) and quantitative analysis was shown as mean ± SEM (b). c
Western blot for H3K9me2 and G9a in G9afl/fl and G9a−/− MEFs. The
G9afl/fl, G9a−/−, and G9a−/− MEFs rescued with G9a and vector
control were assessed by western blot for H3K9me2. Lamin B1 was
used as a protein loading control. S.E. shorter exposure, L.E. longer

exposure. d Quantitation of H3K9me2 is shown as mean ± SEM for N
= 3. e MCF-7 cells transduced with two individual shG9a and shGFP
control were assessed by western blot for H3K9me2, cyclin D1, and
G9a. Lamin B1 was used as a protein loading control. f, g Confocal
microscopy of immunofluorescence for H3K9me2 (green) and nuclear
staining with DAPI (blue) in G9a−/− MEFs rescued with G9aWT or
vector control treated with cyclin D1 small interfering RNA. Images
show the reduction in H3K9me2 by cyclin D1 siRNA in G9a−/− plus
G9a cells but not in G9a−/− plus vector cells. Scale bar, 20 μm (f) and
quantitative analysis was shown as mean ± SEM (g)
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the Pttg1 gene cyclin D1 and G9a ChIP overlapped at a
distal site coinciding with a Ctcf site (Fig. 5f–h). The
same tag density profiles for ChIP-Seq are shown for
cyclin D1 intervals (red) and G9a intervals (blue) in
Fig. 5c, f. ChIP–Quantitative Polymerase Chain Reaction
(ChIP-qPCR) assays were conducted to verify the ChIP-
Seq data of these genes in cyclin D1−/− cells rescued with
FLAG-cyclin D1 or vector control (Fig. 5d, g, j, green
bars) and in G9a−/− cells transduced with wild-type G9a

or vector control (Fig. 5e, h, k, red bars). The primers used
in ChIP-qPCR and the intervals and peaks in ChIP-Seq
are shown in the Supplemental Table 1. Reintroduction of
either cyclin D1 or G9a increased H3K9me2 bound to the
same regions of these genes (Fig. 5d, e, g, h, j, k, **P <
0.01, *P < 0.05). Reintroduction of cyclin D1 into cyclin
D1−/− cells demonstrated that cyclin D1 was recruited to
each target gene examined, accompanied with increased
H3K9me2 (Fig. 5d, g, j, Supplemental Fig. 5A, C, E, G, I,
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K and M). Reintroduction of G9a into G9a−/− cells
resulted in increased G9a and increased H3K9me2 at all
target genes demonstrated by ChIP (Fig. 5e, h, k, Sup-
plemental Fig. 5B, D, F, H, J, L and N).

Cyclin D1 recruits G9a to target genes in the context
of chromatin

The G9a- and cyclin D1-binding regions for Pttg1 and c-
Myc were next assessed by ChIP in MCF-7 cells. As shown
in MEFs, ChIP enrichment was identified for endogenous
cyclin D1 and G9a (Fig. 6a, b). We next assessed the role of
endogenous cyclin D1 in regulating the expression of the
representative target genes shown to bind G9a and cyclin
D1 in ChIP-qPCR and ChIP-Seq. Cyclin D1 siRNA trans-
duction of MCF-7 cells reduced cyclin D1 abundance by
western blotting (Fig. 6c), and consistent with a model in
which endogenous cyclin D1 maintained expression of the
genes identified, cyclin D1 siRNA reduced basal and
estradiol-induced expression of the target genes (Mdm4,
Pttg1, and c-Myc) (Fig. 6d–f). In order to determine whether
cyclin D1 augmented G9a function by enhancing recruit-
ment of G9a to target genes in the context of chromatin,
cyclin D1−/− MEFs were stably transduced with the cyclin
D1 expression vector and G9a ChIP was conducted for the
target genes (Mdm4, Pttg1, and c-Myc). The reintroduction
of cyclin D1 enhanced recruitment of G9a to the target
genes Mdm4 (n= 3, P= 0.01), Pttg1 (n= 3, P < 0.05), and
c-Myc (n= 3, P < 0.04) in ChIP assays (Fig. 6g–i).

Cyclin D1 and G9a are co-located at a subset of LAD-
NL contacts

As we had shown that cyclin D1 binds to G9a, we
examined the functional significance of this association
further. Large genomic regions termed “LADs” interact
with the NL. It has been proposed that the LAD/NL
interactions constrain the position of chromosomes con-
tributing to the plasticity of chromosome folding [14].
Evidence from photoactivation and photobleaching
experiments suggests that during the first two hours of the
G1 phase of the cell cycle, chromatin is mobile over long
distances [37, 38]. G9a methylation of H3 lysine 9 con-
tributes to the anchoring of NL-LAD to laminin [16]. We
therefore examined the position of NL regions and com-
pared these locations with the sites of cyclin D1 and G9a
binding by ChIP-Seq (Supplemental Figure 6). NL
regions were selected based on prior publications of NL in
ESC (orange bars) and in MEFs (violet-/gray-colored
bars) [39, 40]. There are approximately 1189 LAD in
MEFs [41]. There were 100 sites in which coincident
binding of cyclin D1 and G9a occurred. Furthermore, the
coincident binding of cyclin D1 and G9a was located at
the edges of the LAD. We found 31 cyclin D1- and G9a-
binding genes to be located on the LAD edges by ChIP-
Seq (P < 0.001). The 31 cyclin D1- and G9a-binding
genes were located near the edges site within a distance of
+500 bp (P < 0.001). No binding of cyclin D1 and G9a
was identified with any of the approximately 1800 genes
located on the X chromosome.

In prior studies a subset of genes was shown to have G9a
recruitment to their regulatory regions (CDH12, CFHR,
CYP2C19, and LAD1,2,6,8,63). Interestingly, cyclin D1-
and G9a-binding at these regions were shown to coincide
with the NL. We therefore assessed the binding of G9a to
several of these gene regions as previously described [14].
Consistent with prior studies, G9a associated in ChIP at the
region of genes previously identified at the NL, and shown
to be modified by H3K9me2 in a G9a-dependent manner
(Fig. 7a-h). Furthermore, we demonstrated that cyclin D1
was recruited to these same regions in Lamina-associated
genes by ChIP-qPCR (Fig. 7a–h, cyclin D1 ChIP are shown
as green bars).

Cyclin D1 binding to G9a determines the interaction
of LADs with NL

The stochastic interaction of NL with LADs was associated
with increased H3K9me2 status [14]. Although G9a
methylation of H3K9 is important for the anchoring of NL-
LAD to laminin, the mechanisms governing the LAD-NL
interaction are poorly understood. The m6A (adenine-6-
methylation) tracer technology was developed to follow

Fig. 5 G9a and cyclin D1 bind common regulatory regions of genes in
chromatin immunoprecipitation (ChIP)-Seq. a Venn diagram depicting
the overlapping intervals shared between cyclin D1 ChIP-Seq and G9a
ChIP-Seq. b Gene Ontology (GO) biological function enrichment
scores for overlapping terms for 744 genes common between cyclin
D1 ChIP-Seq and G9a ChIP-Seq. c–k Three genes (Mdm4, Pttg1, and
Myc) were selected from the “oncogene” GO biological term and eight
genes were selected from the “neuronal activities” GO term (Supple-
mental Figs. 4,5). c, f, i Depicted are tag density profiles for cyclin D1
intervals (red) and G9a intervals (blue) with respect to the identified
genes. Profiles generated by Integrated Genome Browser are depicted
for enriched regions binding G9a and the same region of cyclin D1
ChIP-Seq. Enriched intervals are designated by an * for cyclin D1 and
a * for G9a. Tag density profiles are not drawn to scale (c, f, i). d, g, j
Individual ChIP-qPCR analysis of target genes identified in ChIP-Seq.
FLAG (FLAG-cyclin D1) ChIP-qPCR analysis of target genes in
cyclin D1−/− plus GFP vector vs cyclin D1−/− plus cyclin D1WT rescue
mouse embryonic fibroblasts (MEFs), and e, h, k G9a ChIP-qPCR of
the same target genes in G9a−/− plus vector vs G9a−/− plus G9aWT

rescued MEFs. H3K9me2 ChIP-qPCR is conducted in each cell type
with IgG as control. Data are shown as mean ± SEM for ChIP-qPCR of
FLAG (FLAG-cyclin D1) and H3K9me2 for target genes identified in
ChIP-Seq. Significant difference are shown as **P < 0.01 or *P < 0.05
for cyclin D1−/− plus GFP vector vs cyclin D1−/− plus cyclin D1WT (d,
g, j). Mean ± SEM is shown for ChIP-qPCR of G9a and H3K9me2 for
Mm44, Pttg1, and c-Myc genes. Significant difference is shown as **P
< 0.01 or *P < 0.05 for G9a−/− plus vector vs G9a−/− plus G9aWT (e,
h, k)
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genomic-NL interactions at a single-cell level [14]. In this
approach, adenine-6-methylation (m6A) is used to in vivo
tag genomic regions in contact with nuclear proteins. In
order to determine the role of cyclin D1 in the G9a-
regulated NL/LAD function [14], we deployed an HT1080-
derived clone in which the Dam-Lamin B and the m6A-
tracer can be independently induced (Fig. 8a). In order to
determine the role of cyclin D1, siRNA to cyclin D1 was
deployed. After 72 h of cyclin D1 siRNA treatment, the
m6A-tracer was induced upon removal of doxycycline using
a tet-off system (Fig. 8b). The inducible Dam-Lamin B1
expression is dependent upon the fusion of a destabilization
domain (DD), which ensures that Dam-Lamin B1 is rapidly
targeted for proteasomal degradation in the absence of the
small molecule called Shield1 [42].

In previous studies, neither Dam nor the fusion of DD
affected the genome NL interactions [14]. The m6A-tracer
was identified in the nuclear periphery 24 h after induction
of Dam-Lamin B1 expression. The 24 h time point was
used, because of the high resolution of m6A-tracer Lamin B1
interaction at that time point (Fig. 8b) [14]. The immuno-
fluorescent labeling showed that the m6A-tracer in green,
after induction of Dam-Lamin B1, co-localizes with
H3K9me2 in red (Fig. 8c in yellow). In contrast, shG9a/

shGLP-transduced cells, and cyclin D1 siRNA-transduced
cells, showed reduced m6A-tracer at the nuclear periphery
and reduced co-localization with H3K9me2 (Fig. 8c). Fig-
ure 8d shows the location of Lamin B1 at the nuclear per-
iphery and the merged image of the m6A-tracer and Lamin
B1 evidenced in control siRNA-treated cells (Fig. 8d, upper
panel). Cyclin D1 siRNA decreased accumulation of m6A-
tracer at the nuclear periphery (Fig. 8d). shG9a/shGLP
reduced the percentage of cells with the m6A-tracer ring by
>40% (Fig. 8e). Quantitative analysis of n= 415 cells
demonstrated a 50% reduction in the percentage of cells
with m6A-tracer in cyclin D1 siRNA-treated cells (Fig. 8f,
P < 0001). Together, these studies demonstrate that endo-
genous cyclin D1, like endogenous G9a, promotes H3K9
dimethylation and LAD-NL interaction.

Cyclin D1 and G9a are overexpressed in ERα+ breast
cancer

G9a is overexpressed in many types of cancer [43–45] and
has been shown to augment tumorigenesis [46, 47],
reviewed in [48]. Similarly, cyclin D1 overexpression
augments breast cancer in transgenic mice [49, 50]. We
investigated whether cyclin D1 and G9a expression was
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Fig. 6 G9a and cyclin D1 bind
common regulatory regions of
genes in chromatin
immunoprecipitation (ChIP)-Seq
in MCF-7 cells. a, b ChIP-qPCR
analysis of target genes Pttg1
and c-Myc in MCF-7 cells for
G9a and cyclin D1 binding. c
Western blot for cyclin D1 in
cyclin D1 siRNA-treated MCF-7
cells confirmed decrease of
cyclin D1 abundance. d–f
Abundance of mRNA for Mdm4
(d), Pttg1 (e), and c-Myc (f) in
MCF-7 with cyclin D1 siRNA
or control is shown. Data of
qPCR is mean ± SEM for n= 3.
Eth ethanol, E2 estradiol. g–i
ChIP-qPCR analysis of target
genes Pttg1 and c-Myc for G9a
binding in cyclin D1 rescue
cyclin D1−/− mouse embryonic
fibroblasts
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increased in human breast cancer and whether cyclin D1
correlated with increased G9a abundance in particular
breast cancer subtypes. The relative abundance of cyclin D1
and G9a was correlated in normal breast epithelium (P=
0.003, Supplemental Fig. 7A and B). Consistent with prior
studies, cyclin D1 mRNA levels were increased in breast
cancer compared with healthy breast tissue (Supplemental
Fig. 7C). G9a was also increased in human breast cancer
compared with healthy breast tissue (Supplemental Fig.
7D). G9a mRNA levels correlated with cyclin D1 mRNA
levels in healthy breast tissue (R= 0.29, P= 0.003) and
ERα+ breast cancer samples (R= 0.27, P= 8.07e-30). But
no significant correlation was observed in ERα− breast
cancer patients (Supplemental Fig. 7E and F). Increased
expression of either cyclin D1 or G9a was not significantly
correlated with poor outcome breast cancer (Supplemental
Fig. 7G and H).

Together these data demonstrate that cyclin D1 binds and
recruits G9a to induce H3K9 dimethylation, which is
known to promote NL-LAD interactions at the nuclear
periphery (Supplemental Fig. 8). Cyclin D1 recruits G9a,
which promotes H3K9me2 at the promoter of target genes,
which may thereby regulate gene expression and signaling.

Discussion

The current studies define novel functions for cyclin D1
determined through binding of the protein methyltransferase
G9a. First, using G9a rescued G9a−/− MEFs, we showed
that endogenous cyclin D1 was required for G9a to induce
H3K9me2. Second, in genome-wide analysis, 26.2% of
cyclin D1-binding sites were found to be coincident for G9a
binding (P < 0.01). Furthermore, there was enrichment for
cyclin D1 and G9a binding at the edges of LADs. Third, we

showed endogenous cyclin D1 augments recruitment of
G9a to target genes in ChIP (Pttg1 and Mdm4). Fourth,
using an adenine-6-methylation tracer, we demonstrated the
requirement for endogenous cyclin D1 in maintaining the
G9a function of H3K9me2 visualizing incorporation at NL-
LAD sites. Collectively, these studies demonstrate a novel
chaperone function for cyclin D1 to recruit G9a and thereby
augment H3K9 dimethylation.

Analysis of cyclin D1 and G9a ChIP-Seq demonstrated a
significant overlap in binding to common genes. The GO
terms corresponding to the genes bound by both cyclin D1
and G9a included regulation of cell growth, apoptosis, and
neural function. G9a is known to be overexpressed in a
variety of malignancies [43–45] and enhances tumorigen-
esis [46, 47]. Similarly, cyclin D1 is overexpressed in
malignancies and enhances mammary tumorigenesis
[49, 50]. Cyclin D1 promotes neurite extension [34, 35] and
using anti-sense, cyclin D1 was shown to be essential for
Nerve Growth Factor (NGF)-induced neurite extension
[34]. Cyclin D1 and G9a are expressed in the developing
central nervous system [51] and participate in neurogenesis
[36], therefore an additional seven genes were selected from
the neurogenesis function. At each of the genes assessed,
cyclin D1 augmented H3K9me2 at the target gene in
chromatin. Furthermore, cyclin D1 was shown to augment
G9a recruitment to target genes. Mutational analysis herein
demonstrated the binding and augmentation of G9a KMT
function was independent of the cyclin D1 kinase function,
consistent with recent studies that showed cyclin D1
induced mammary tumorigenesis independently of its
kinase function [30, 50]. The mechanisms by which cyclin
D1 governs neurogenesis is not known, however based on
genetic deletion studies in the mouse, may involve the
Notch pathway [52]. Cyclin D1 activates Notch signaling
by enhancing γ secretase activity [53], and the neural stem
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Fig. 7 G9a and cyclin D1 bind common regions of Lamina-associated
genes in chromatin immunoprecipitation (ChIP). Individual ChIP-
qPCR analysis of Lamina-associated target genes in MCF-7 cells.

Cyclin D1 and G9a ChIP-qPCR analysis of target is shown as mean ±
SEM for n= 3. a CDH12, b LAD2, c CYP2C19, d LAD6, e CFHR, f
LAD8, g LAD1, and h LAD63

4242 Z. Li et al.



siRNA 72 h

Lamin B1
Cyclin D1
H3K9me2

Clone #3, HT1080 with DD-
Dam-Lamin B1 and m6A-Tracer

Nocodazole +Shield1/-Dox

2 h 24 h

staining

C

D
m6A-Tracer Lamin B1

C
on

tro
l

si
C

yc
lin

D
1

C
on

tro
l

sh
G

9a
/s

hG
LP

si
C

yc
lin

D
1

m6A-Tracer H3K9me2 DAPI
m6A-Tracer
H3K9me2

+Shield1Unstable Stable • • • •
LAD

LAD

DD-Dam-
Lamin B1

tetO ×× -Dox • • • •

m6A-Tracer

• m6A

A B

m6A-Tracer
Lamin B1

0
20
40
60
80

si
C

yc
lin

D
1

C
on

tro
l%

 o
f c

el
ls

 w
ith

 
m

6 A
-tr

ac
er

 ri
ng

0
20
40
60
80

%
 o

f c
el

ls
 w

ith
 

m
6 A

-tr
ac

er
 ri

ng

C
on

tro
l

sh
G

9a
/s

hG
LP

sh
G

9a
/s

hG
LP

P<0.005 P<0.001
E F

Fig. 8 Cyclin D1 determines accumulation of G9a-mediated nuclear
lamina interactions at the nuclear periphery. a Illustration of the
inducible m6A-tracer/Dam-lamin B1 system in the HT1080 cell line
stably expressing the Shield1-inducible Dam-Lamin B1 and the Tet-
off m6A -tracer (known as the line clone 3). Inducible Dam-Lamin B1
expression was established by the fusion of a destabilization domain
(DD), which causes Dam-Lamin B1 to be rapidly targeted for pro-
teasomal degradation unless the protein is shielded by the synthetic
small molecule Shield1.The induction of m6A-tracer is based on the
Tet-Off system, where the removal of doxycycline (Dox) results in the
activation of transcription. b Schematic representation of the experi-
mental protocol. c Confocal microscopy images showing both G9a
shRNA/GLP shRNA and cyclin D1 siRNA decreases

H3K9me2 staining (red) in H1080 cells. d Representative confocal
microscopy images showing cyclin D1 siRNA decreases accumulation
of m6A-tracer signal (green) at the nuclear periphery after induction of
Dam-Lamin B1. Lamin B1 staining is shown in red. e Quantitative
analysis of m6A-tracer incorporation at the nuclear periphery after
induction of Dam-Lamin B1 expression shown as % of cells incor-
porating tracer for n > 200 separate cells for shG9a/shGLP treatment
and its vector control. Data are percentage ± 95% confidence interval
(CI). f Quantitative analysis of m6A-tracer incorporation at the nuclear
periphery shown as % of cells incorporating tracer for n > 400 separate
cells cyclin D1 siRNA treatment as well as its control. Data are per-
centage ± 95% CI
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cell-promoting function of cyclin D1 is distinct from its cell
cycle function [54]. Whether the augmentation of G9a
function by cyclin D1 contributes to tumorigenesis and
neurogenesis remains to be determined.

The regulation of gene expression and the maintenance
of genomic integrity is influenced by interphase chromo-
somes architecture. The mechanisms governing chromoso-
mal positioning and architecture is poorly understood. The
NL interacts with multiple LAD, which cover 35–40% of
the mammalian genome, thereby restraining the position of
chromosomes. The functional significance of the interaction
between cyclin D1 and G9a included the requirement for
endogenous cyclin D1 to maintain the G9a-dependent
genome-NL interactions [14]. As the abundance of cyclin
D1 is regulated during the cell cycle and by diverse onco-
genic and mitogenic signals [23], the current studies provide
a potential mechanism by which the multiple dynamic
inputs that govern cyclin D1 abundance may, in turn,
influence chromosomal architecture.

The current studies demonstrate cyclin D1 functions to
recruit G9a and thereby induce dimethylation of H3K9 as
shown by immunofluorescence and western blotting. Fur-
thermore, cyclin D1, recruited in the context of chromatin,
induced H3K9me2. Several distinct enzyme complexes are
either recruited by cyclin D1WT in the context of chromatin
including SUV39H1, HP1α, HDAC, and p300 [26, 29], or
in the case of a cyclin D1 synthetic mutant (T286A),
associates with PRMT5 [55]. G9a has an ability to methy-
late additional non-histone substrates, and it will be of
interest to determine whether cyclin D1 is capable of aug-
menting these additional G9a-mediated functions.
H3K9me2, which is an abundant histone mark maintained
by several enzymes in addition to G9a (SETDB1 and
SUV39H1), was maintained by endogenous cyclin D1.
Whether G9a is the only H3K9 dimethylase bound by
cyclin D1 remains to be determined. Further analysis of the
genes targeted by G9a and cyclin D1 that govern chromo-
somal segregation and oncogenesis may provide important
mechanistic insights into these fundamental processes.

Materials and methods

Plasmids

The pBIND plasmids expressing GAL4-tagged cyclin D1
wild type and mutations were as described previously [56].
The pcDNA3.1 plasmids encoding FLAG-tagged G9aWT

and deletion mutations were obtained from Dr. Eiji Hara
(Cancer Institute, Japanese Foundation for Cancer
Research, Tokyo, Japan) [57]. The pLKO lentiviral plasmid
vectors of human G9a shRNA and GLP shRNA were
purchased from Sigma.

Cell culture and reagents

MCF-7 and HEK 293T cell lines were from the American
Type Culture Collection (ATCC, Manassas, VA). Cyclin
D1+/+ MEFs, cyclin D1−/− MEFs, cyclin D1−/− MEFs
rescued with cyclin D1WT, cyclin D1KE mutant, or vector
control were as described before [58]. The G9afl/fl MEFs
and G9a−/− MEFs were a generous gift from Dr. Alexander
Tarakhovsky (The Rockefeller University, New York) [59].
The HT1080 cell line stably expressing the Shield1-
inducible Dam-Lamin B1 and the Tet-off m6A -tracer
(known as the line clone 3) was provided by Dr. Bas van
Steensel (Netherland Cancer Institute, Amsterdam, Nether-
land) [14]. The restriction endonuclease DpnI cuts the
sequence Gm6ATC (m6A is short for adenine-6-methylation)
but not GATC. The truncation mutation, a C-terminal
fragment of 109 amino acids of DpnI fused to enhanced
green fluorescent protein (EGFP) is referred as m6A-tracer.
The m6A-tracer signal is reduced beyond detection (EGFP
detected using microscopy) after 24 h incubation with 50
ng/ml doxycycline (Research Products International Corp.
Mount Prospect, IL). Cells were cultured in Dulbecco’s
modified Eagle’s medium (DMEM) containing streptomy-
cin and penicillin (100 mg of each/liter) and 10% fetal
bovine serum (FBS). To promote stability of long-term
culture, the clone 3 of HT1080 cells were maintained in
400 μg/ml G418 (Santa Cruz Biotechnology) and 2 μg/ml
puromycin (Sigma).

MCF-7 and HEK 293T were recently authenticated by
ATCC. The MEFs generated by the Pestell lab were
authenticated by IDEXX Bioresearch. All of the cells were
tested for Mycoplama contamination using the ATCC
Universal Mycoplasma Detection Kit.

siRNA knockdown of endogenous cyclin D1

The siRNAs specifically targeting human cyclin D1 mRNA
(Hs_CCND_1, Hs_CCND_2, and Hs_CCND_3), pur-
chased from Qiagen, were used for suppressing endogenous
cyclin D1 expression in HT1080 cells. For suppression of
endogenous cyclin D1 expression in G9a−/− MEFs rescued
with wild-type G9a or vector control, mouse Ccnd1_2
FlexiTube siRNAs (Catalog #SI00943642) specifically tar-
geting mouse cyclin D1 mRNA were also purchased from
Qiagen. The cyclin D1 siRNAs or negative control siRNA
(Qiagen) were transfected into the cells with the Lipo-
fectamine 2000 (Invitrogen, Carlsbad, CA) according to the
manufacturer’s instruction. For HT1080 cells, which stably
expressing the Shield1-inducible Dam-Lamin B1 and the
Tet-off m6A-tracer, after transfection, the cells were
sequentially treated with 10 μM Nocodazole (Sigma) for 72
h and 0.5 μM Shield1 (Clontech) in DMEM with 10%
tetracycline-free FBS for 2 h to induce Dam-Lamin B1 and
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m6A-tracer expressing. The immunofluorescence staining
was performed another 24 h later. For G9a−/− MEFs,
immunofluorescence staining was processed 72 h later after
siRNA transfection.

Immunofluorescence staining

Immunofluorescence staining was conducted as described
previously [56]. The cells in four-well chamber slides were
fixed for 10 min at room temperature (RT) with 4% paraf-
ormaldehyde, and subsequently with cold methanol at −20
°C for 5 min. The slides were then treated with 0.2% Triton
X-100 for 5 min at RT and blocked with 2% bovine serum
albumin overnight at 4 °C. For H3K9me2 and cyclin D1,
G9a and cyclin D1 co-staining in MEFs the primary anti-
bodies used were mouse monoclonal anti-H3K9me2
(ab1220) (Abcam Inc.) (1/800), mouse monoclonal anti-
G9a (clonal A8620A) (PP-A8620A-00) (R&D System) (1/
500), and rabbit polyclonal anti-cyclin D1 (clone H-295)
(sc-753) (Santa Cruz Biotechnology, Santa Cruz, CA) (1/
200). The secondary antibodies used were Alexa Fluor 568-
conjugated goat anti-mouse immunoglobulin G (IgG)
(Molecular Probes, Inc.) (1/500) and Alexa Fluor 647-
conjugated F(ab′)2 fragment of goat anti-rabbit IgG
(Molecular Probes, Inc.) (1/500). For HT1080 immunos-
taining the primary antibodies used were mouse monoclonal
anti-cyclin D1 (clone DCS-6) (sc-20044) (Santa Cruz Bio-
technology, Santa Cruz, CA) (1/200), rabbit polyclonal anti-
Lamin B1 (ab16048) (Abcam Inc.) (1/900), and mouse
monoclonal anti-H3K9me2 (ab1220) (Abcam Inc.) (1/800).
The secondary antibodies used were rhodamine-conjugated
F(ab′)2 fragment of goat anti-rabbit IgG (Jackson Immuno
Research Laboratories, Inc.) (1/500) and Alexa Fluor 633-
conjugated F(ab′)2 fragment of goat anti-mouse IgG
(Molecular Probes, Inc.) (1/500). The samples were visua-
lized on a Zeiss LSM 510 META Confocal Microscope
with a ×63 objective.

Immunoprecipitation and western blotting

HEK 293T cells was co-transfected with pBIND-FLAG-
G9a and pcDNA3.1-GAL4-cyclin D1. The transfected cells
were lysed 48 h later in IP buffer (10 mM Tris-HCl at pH
7.4, 150 mM NaCl, 1 mM EDTA, 1 mM EGTA, 1% Triton
X-100, 0.5% IGEPAL CA-630, 10% glycerol, 0.2 mM
sodium orthovanadate, 0.1 mM phenylmethylsulfonyl
fluoride, 10 μg/ml aprotinin, 1 μg/ml leupeptin, and 1 μg/ml
pepstatin). For each IP, 1 ml cell lysate containing 1 mg
protein was incubated overnight with 10 μl anti-FLAG M2-
agarose beads (A2220, Sigma-Aldrich) at 4 °C. The
immunoprecipitates were washed five times with IP buffer,
and lysed in 20 μl of ×2 sample buffer. The

immunoprecipitates and the corresponding lysates contain-
ing 50 μg protein were analyzed by western blotting as
previously described [58]. Antibodies that were used for
western blotting included: mouse anti-FLAG antibody (M2,
F-3165, Sigma-Aldrich), anti-vinculin antibody (V9131,
Sigma-Aldrich), mouse anti-cyclin D1 antibody (DCS-6,
SC-20044, Santa Cruz), rabbit anti-Lamin B1 (ab16048,
Abcam), mouse anti-G9a (clonal A8620A) (PP-A8620A-
00) (R&D System), mouse anti-H3K9me2 (ab1220,
Abcam), and rabbit anti-G9a antibody (Catalog # 07–551,
Millipore).

ChIP assay

ChIP analysis was performed using Magna ChIP kits
(Millipore) according to the manufacturer’s instruction. The
following antibodies were used in ChIP: mouse monoclonal
anti-FLAG (M2) (F-3165, Sigma-Aldrich) (for FLAG-
cyclin D1), mouse anti-G9a (clonal A8620A) (PP-
A8620A-00) (R&D System), rabbit anti-G9a (clonal C6H3)
(Cell signaling), and mouse anti-H3K9me2 (ab1220)
(Abcam Inc.). For a negative control, mouse IgG was from
the Magna ChIP kits (Millipore). SYBR Green PCR kit
(Invitrogen) was used in the ChIP-real time PCR (ChIP-
qPCR). The primers used in ChIP-qPCR are shown in the
Supplemental Table 1.

Generation of cyclin D1 knockout mice and
immunohistochemistry staining

The Animal protocol used in this study was approved by the
Institutional Animal Care & Use Committee at Thomas
Jefferson University. C57BL/6J cyclin D1fl/fl mice were a
kind gift from Dr. Piotr Sicinski (Dana-Farber Cancer
Institute, Boston, MA). C57BL/6J Rosa26-CreERT2 mice,
which express the tamoxifen-inducible CreERT2 fusion
protein were from Dr. Thomas Ludwig (Columbia Uni-
versity, New York, NY). Cyclin D1fl/fl-Rosa26CreERT2/CreERT2

mice were generated by crossing cyclin D1fl/fl mice with
Rose26-Cre-ERT2 mice. Cyclin D1 knockout mice were
generated with Cyclin D1fl/fl-Rosa26CreERT2/CreERT2 mice by
intraperitoneal injection of tamoxifen (1 mg/200 µl sun-
flower seed oil) for 5 days. Cyclin D1wt/wt-Rosa26CreERT2/
CreERT2 mice were used as control. Mammary glands from
these mice were collected 4 weeks after IP injection of
tamoxifen. Immunohistochemistry staining was conducted
on paraffin-embedded mammary gland sections. The pri-
mary antibodies used were mouse monoclonal anti-cyclin
D1 (clone DCS-6) (sc-20044) (Santa Cruz Biotechnology,
Santa Cruz, CA), rabbit polyclonal anti-G9a (clone C6H3)
(Cell Signaling Technology, Inc, Danvers, MA), and mouse
monoclonal anti-H3K9me2 (ab1220) (Abcam Inc.).
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Cyclin D1- and G9a-bound regions by ChIP-Seq and
related biological function pathway analysis

Genomic DNA regions bound by cyclin D1 [30] were
compared to those bound by G9a as determined via ChIP-
Seq analysis [33]. We retrieved genomic locations of G9a
peaks from the GEO database (accession number
GSM1215219). Cyclin D1 peaks were identified using
MACS v1.4 software with the following parameters: –

shiftsize 50 –nomodel [60]. We identified 6834 cyclin D1
peaks at the false discovery rate cutoff of 5%. The average
size of a G9a-enriched region (peak) is 800 bp. The average
size of a cyclin D1-enriched region (peak) is 400 bp. A
cyclin D1 and G9a peaks were deemed to be co-localized at
a locus when the enriched regions shared overlapping
nucleotide binding. Using this criterion, we found that 755
of cyclin D1 peaks overlap G9a peaks genome-wide. In all,
744 genes corresponding with these 755 peaks were located
within 25 kb of gene transcription start sites [61–63]. The
common genes between the two sets were queried for bio-
logical function using the PANTHER classification system
[64, 65] of GO terms within Database for Annotation,
Visualization and Integrated Discovery (DAVID) [66, 67].
GO-enrichment analysis was conducted using PANTHER
(Protein ANalysis THrough Evolutionary Relationship).
The PANTHER Classification System of GO terms
involved in a Biological Process was used to cluster genes
based on function. The enrichment score was based on the
EASE scores; a modified Fisher exact P-value for gene
enrichment analysis. The following parameters within
DAVID were kept at default; EASE threshold= 0.1
and count threshold= 2. PANTHER pathways (9 total)
were chosen based on Fisher exact P-value > 0.05. Select
genes were further analyzed using the Integrated Genome
browser (Affymetrix) to depict the cyclin D1 and G9a tracks
[66, 67].

Analysis of G9a- and cyclin D1 DNA-bound regions
at chromosomal locations and to LAD

A list of genes was generated for G9a- and cyclin D1-bound
genomic locations based on prior published ChIP-Seq data
[30, 33, 41]. A sequentially expanding list of nearest-
neighbor genes was compared between G9a and cyclin D1
ChIP-Seq data by making iterative expansions of the asso-
ciated interval (500 bp, 1 kb, 2 kb, 5 kb, and 10 kb). We
obtained the list of G9a associated Ensembl gene IDs from
Mozzetta et al. [33], supplementary table (http://www.cell.
com/cms/attachment/2038986201/2052742122/mmc2.
xlsx), column E (G9a ChIP-Seq in TT2 mESC). The list of
cyclin D1-associated genes was based on overlapping the
cyclin D1 interval coordinate data to the NCBI protein-
coding genes [30]. Genes found under cyclin D1 intervals

were validated by comparing the cyclin D1 gene sets
obtained by two different researchers using two different
methods. Both methods returned the same core genes, with
the newer method returning more genes (478). Both meth-
ods found the overlap of cyclin D1/G9a genes statistically
significant. The first method was the NCBI overlap method
just described. The second method found Ensembl genes
under or within 10 kb of the cyclin D1 intervals using the
Ensembl Release 67 from May 2012 because the cyclin D1
interval data were mapped onto the older assembly. The
additional genes from the second method were likely found
because there was no loss from a NCBI-to-Ensemble gene
ID translation when comparing G9a Ensembl IDs and
cyclin D1 NCBI vs Ensembl gene IDs. To obtain the list of
genes that possess both overlapping genes of cyclin D1 and
G9a, we analyzed the intersection of G9a and cyclin D1
gene sets. Statistical significance of the overlap was con-
ducted using hypergeometric test [68, 69]. The intersecting
cyclin D1 and G9a protein-coding genes were mapped to
prior published LAD coordinates for mESCs and fibroblasts
[70, 71].

Statistical analysis

The statistical significance of mean difference was deter-
mined with two-tailed Student’s t-test. The statistical sig-
nificance of two sample proportions was determined with
two-tailed two-sample z-test.
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