Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Bioengineered tumor microenvironments with naked mole rats high-molecular-weight hyaluronan induces apoptosis in breast cancer cells

Abstract

The naked mole rat (nmr) is cancer resistant due to the abundant production of extremely high-molecular-weight hyaluronan (EHMW-HA). However, whether EHMW-HA has similar anti-cancer effects in mice and humans remains to be determined. The present study used breast cancer cells to clarify the effect of EHMW-HA on breast cancer. First, the overexpression of nmrHas2 in 4T1 and BT549 cell lines in both two-dimensional (2D) and three-dimensional (3D) models to mimic tumor microenvironment was established. The 4T1/BT549-nmrHas2 cells could secrete EHMW-HA (with a molecular weight of up to 6 MDa), which was similar to that found in the naked mole rat. Second, EHMW-HA altering tumor microenvironment in both 2D monolayers and 3D spheroids significantly enhanced apoptosis, inhibiting the proliferation of 4T1 and BT549 cells. The prominent anticancer effects of EHMW-HA on the cancer-cell apoptosis phenotype were further confirmed by inhibiting tumor formation in nude mice. Finally, EHMW-HA significantly induced higher p53 protein expression, which enhanced pro-apoptotic proteins p21 and Bax in breast cancer cells; this is in contrast with the triggering of hypersensitivity of the naked mole rat cells to early contact inhibition (ECI). These results have important implications for the design of therapeutic approaches based on the application of EHMW-HA.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Karbownik MS, Nowak JZ. Hyaluronan: towards novel anti-cancer therapeutics. Pharmacol Rep. 2013;65:1056–74.

    Article  CAS  Google Scholar 

  2. Kultti A, Li X, Jiang P, Thompson CB, Frost GI, Shepard HM. Therapeutic targeting of hyaluronan in the tumor stroma. Cancers. 2012;4:873–903.

    Article  CAS  Google Scholar 

  3. Tian X, Azpurua J, Hine C, Vaidya A, Myakishev-Rempel M, Ablaeva J, et al. High-molecular-mass hyaluronan mediates the cancer resistance of the naked mole rat. Nature. 2013;499:346–9.

    Article  CAS  Google Scholar 

  4. Tian X, Azpurua J, Ke Z, Augereau A, Zhang ZD, Vijg J, et al. INK4 locus of the tumor-resistant rodent, the naked mole rat, expresses a functional p15/p16 hybrid isoform. Proc Natl Acad Sci USA. 2015;112:1053–8.

    Article  CAS  Google Scholar 

  5. Heldin P, Basu K, Olofsson B, Porsch H, Kozlova I, Kahata K. Deregulation of hyaluronan synthesis, degradation and binding promotes breast cancer. J Biochem. 2013;154:395–408.

    Article  CAS  Google Scholar 

  6. Thanos CD. Targeting the physicochemical, cellular, and immunosuppressive properties of the tumor microenvironment by depletion of hyaluronan to treat cancer. In: Novel immunotherapeutic approaches to the treatment of cancer. New York: Springer, Cham, 2016. p. 249–68.

    Google Scholar 

  7. Bernert B, Porsch H, Heldin P. Hyaluronan synthase 2 (HAS2) promotes breast cancer cell invasion by suppression of tissue metalloproteinase inhibitor 1 (TIMP-1). J Biol Chem. 2011;286:42349–59.

    Article  CAS  Google Scholar 

  8. Okuda H, Kobayashi A, Xia B, Watabe M, Pai SK, Hirota S, et al. Hyaluronan synthase HAS2 promotes tumor progression in bone by stimulating the interaction of breast cancer stem-like cells with macrophages and stromal cells. Cancer Res. 2012;72:537–47.

    Article  CAS  Google Scholar 

  9. Huang Z, Zhao C, Radi A. Characterization of hyaluronan, hyaluronidase PH20, and HA synthase HAS2 in inflammation and cancer. Inflamm Cell Signal. 2014;1.

  10. Wu M, Cao M, He Y, Liu Y, Yang C, Du Y, et al. A novel role of low molecular weight hyaluronan in breast cancer metastasis. FASEB J. 2015;29:1290–8.

    Article  CAS  Google Scholar 

  11. Miyawaki S, Kawamura Y, Oiwa Y, Shimizu A, Hachiya T, Bono H, et al. Tumour resistance in induced pluripotent stem cells derived from naked mole-rats. Nat Commun. 2016;7:11471.

    Article  CAS  Google Scholar 

  12. Park TJ, Reznick J, Peterson BL, Blass G, Omerbasic D, Bennett NC, et al. Fructose-driven glycolysis supports anoxia resistance in the naked mole-rat. Science. 2017;356:307–11.

    Article  CAS  Google Scholar 

  13. Carvalho MP, Costa EC, Miguel SP, Correia IJ. Tumor spheroid assembly on hyaluronic acid-based structures: a review. Carbohydr Polym. 2016;150:139–48.

    Article  CAS  Google Scholar 

  14. Pampaloni F, Reynaud EG, Stelzer EH. The third dimension bridges the gap between cell culture and live tissue. Nat Rev Mol Cell Biol. 2007;8:839–45.

    Article  CAS  Google Scholar 

  15. Gilli R, Kacurakova M, Mathlouthi M, Navarini L, Paoletti S. FTIR studies of sodium hyaluronate and its oligomers in the amorphous solid phase and in aqueous solution. Carbohydr Res. 1994;263:315–26.

    Article  CAS  Google Scholar 

  16. Newmeyer DD, Ferguson-Miller S. Mitochondria: releasing power for life and unleashing the machineries of death. Cell. 2003;112:481–90.

    Article  CAS  Google Scholar 

  17. Giorgio M, Migliaccio E, Orsini F, Paolucci D, Moroni M, Contursi C, et al. Electron transfer between cytochrome c and p66Shc generates reactive oxygen species that trigger mitochondrial apoptosis. Cell. 2005;122:221–33.

    Article  CAS  Google Scholar 

  18. Lee YJ, Kim SA, Lee SH. Hyaluronan suppresses lidocaine-induced apoptosis of human chondrocytes in vitro by inhibiting the p53-dependent mitochondrial apoptotic pathway. Acta Pharmacol Sin. 2016;37:664–73.

    Article  CAS  Google Scholar 

  19. Zhao YF, Qiao SP, Shi SL, Yao LF, Hou XL, Li CF, et al. Modulating three-dimensional microenvironment with hyaluronan of different molecular weights alters breast cancer cell invasion behavior. ACS Appl Mater Interfaces. 2017;9:9327–38.

    Article  CAS  Google Scholar 

  20. Song YK, Billiar TR, Lee YJ. Role of galectin-3 in breast cancer metastasis: involvement of nitric oxide. Am J Pathol. 2002;160:1069–75.

    Article  CAS  Google Scholar 

  21. Nikitovic D, Kouvidi K, Karamanos NK, Tzanakakis GN. The roles of hyaluronan/RHAMM/CD44 and their respective interactions along the insidious pathways of fibrosarcoma progression. Biomed Res Int. 2013;2013:929531.

    Article  Google Scholar 

  22. Cooper EH, Forbes MA. Serum hyaluronic acid levels in cancer. Br J Cancer. 1988;58:668.

    Article  CAS  Google Scholar 

  23. Laurent TC, Fraser JR. Hyaluronan. FASEB J. 1992;6:2397–404.

    Article  CAS  Google Scholar 

  24. Laurent TC, Laurent UB, Fraser JR. Functions of hyaluronan. Ann Rheum Dis. 1995;54:429.

    Article  CAS  Google Scholar 

  25. Yang C, Cao M, Liu H, He Y, Xu J, Du Y, et al. The high and low molecular weight forms of hyaluronan have distinct effects on CD44 clustering. J Biol Chem. 2012;287:43094–107.

    Article  CAS  Google Scholar 

  26. Fuchs K, Hippe A, Schmaus A, Homey B, Sleeman JP, Orian-Rousseau V. Opposing effects of high- and low-molecular weight hyaluronan on CXCL12-induced CXCR4 signaling depend on CD44. Cell Death Dis. 2013;4:e819.

    Article  CAS  Google Scholar 

  27. Beasley KL, Weiss MA, Weiss RA. Hyaluronic acid fillers: a comprehensive review. Facial Plast Surg. 2009;25:86–94.

    Article  CAS  Google Scholar 

  28. Rayahin JE, Buhrman JS, Zhang Y, Koh TJ, Gemeinhart RA. High and low molecular weight hyaluronic acid differentially influence macrophage activation. ACS Biomater Sci Eng. 2015;1:481–93.

    Article  CAS  Google Scholar 

  29. Gao F, Liu Y, He Y, Yang C, Wang Y, Shi X, et al. Hyaluronan oligosaccharides promote excisional wound healing through enhanced angiogenesis. Matrix Biol. 2010;29:107–16.

    Article  CAS  Google Scholar 

  30. Gao F, Yang CX, Mo W, Liu YW, He YQ. Hyaluronan oligosaccharides are potential stimulators to angiogenesis via RHAMM mediated signal pathway in wound healing. Clin Invest Med Med Clin Et Exp. 2008;31:E106–16.

    Article  CAS  Google Scholar 

  31. Brown TJ. The development of hyaluronan as a drug transporter and excipient for chemotherapeutic drugs. Curr Pharm Biotechnol. 2008;9:253–60.

    Article  CAS  Google Scholar 

  32. Udabage L, Brownlee GR, Nilsson SK, Brown TJ. The over-expression of HAS2, Hyal-2 and CD44 is implicated in the invasiveness of breast cancer. Exp Cell Res. 2005;310:205–17.

    Article  CAS  Google Scholar 

  33. Masters KS, Shah DN, Leinwand LA, Anseth KS. Crosslinked hyaluronan scaffolds as a biologically active carrier for valvular interstitial cells. Biomaterials. 2005;26:2517–25.

    Article  CAS  Google Scholar 

  34. Rowley JA, Madlambayan G, Mooney DJ. Alginate hydrogels as synthetic extracellular matrix materials. Biomaterials. 1999;20:45–53.

    Article  CAS  Google Scholar 

  35. Goldsworthy TL, Conolly RB, Fransson-Steen R. Apoptosis and cancer risk assessment. Mutat Res. 1996;365:71–90.

    Article  Google Scholar 

  36. Louderbough JM, Schroeder JA. Understanding the dual nature of CD44 in breast cancer progression. Mol Cancer Res. 2011;9:1573–86.

    Article  CAS  Google Scholar 

  37. Levine AJ. p53, the cellular gatekeeper for growth and division. Cell. 1997;88:323–31.

    Article  CAS  Google Scholar 

  38. Giaccia AJ, Kastan MB. The complexity of p53 modulation: emerging patterns from divergent signals. Genes Dev. 1998;12:2973–83.

    Article  CAS  Google Scholar 

  39. Godar S, Ince TA, Bell GW, Feldser D, Donaher JL, Bergh J, et al. Growth-inhibitory and tumor-suppressive functions of p53 depend on its repression of CD44 expression. Cell. 2008;134:62–73.

    Article  CAS  Google Scholar 

  40. Mirzayans R, Andrais B, Scott A, Murray D. New insights into p53 signaling and cancer cell response to DNA damage: implications for cancer therapy. J Biomed Biotechnol. 2012;2012:170325.

    Article  Google Scholar 

  41. Seluanov A, Hine C, Azpurua J, Feigenson M, Bozzella M, Mao Z, et al. Hypersensitivity to contact inhibition provides a clue to cancer resistance of naked mole-rat. Proc Natl Acad Sci USA. 2009;106:19352–7.

    Article  CAS  Google Scholar 

  42. Zhao Y, Tyshkovskiy A, Muñoz-Espín D, Tian X, Serrano M, Magalhaes JP, et al. Naked mole rats can undergo developmental, oncogene-induced and DNA damage-induced cellular senescence. Proc Natl Acad Sci USA. 2018;115:1801.

    Article  CAS  Google Scholar 

  43. Seluanov A, Gladyshev VN, Vijg J, Gorbunova V. Mechanisms of cancer resistance in long-lived mammals. Nat Rev Cancer. 2018;18:433–41.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by the National Natural Science Foundation of China (Grant No.: 51773050 and 81770923), the Opening Foundation of the State Key Laboratory of Cancer Biology (CBSKL201106), and the author was supported by the Heilongjiang Postdoctoral Fund (No. LBH-Z18068) and a general financial grant from the China Postdoctoral Science Foundation (No. 2018M641837).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weiming Tian.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, Y., Qiao, S., Hou, X. et al. Bioengineered tumor microenvironments with naked mole rats high-molecular-weight hyaluronan induces apoptosis in breast cancer cells. Oncogene 38, 4297–4309 (2019). https://doi.org/10.1038/s41388-019-0719-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-019-0719-4

This article is cited by

Search

Quick links