Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Cancer therapy with a CRISPR-assisted telomerase-activating gene expression system

Abstract

Cancer is caused by a series of alterations in genome and epigenome and exists in multiple complex forms, making it difficult to be prevented and/or treated. Telomerase, an enzyme responsible for the maintenance of telomere, is silent in most normal somatic cells but activated in 90% of cancer cells, making it an excellent target for cancer therapy. Therefore, various telomerase activity inhibitors have been developed to treat cancer but all failed due to side effects. Here we acted oppositely to develop a cancer gene therapy named telomerase-activating gene expression (Tage) system by utilizing the telomerase activity in cancer cells. The Tage system consisted of an effector gene expression vector that carried a 3ʹ telomerase-recognizable stick end and an artificial transcription factor expression vector that could express dCas9-VP64 and an sgRNA targeting telomere repeat sequences. By using Cas9 as an effector gene, the Tage system effectively killed various cancer cells, including HepG2, HeLa, PANC-1, MDA-MB-453, A549, HT-29, SKOV-3, Hepa1-6, and RAW264.7, without affecting normal cells MRC-5, HL7702, and bone marrow mesenchymal stem cell (BMSC). More importantly, a four-base 3ʹ stick end produced by the homothallic switching endonuclease in cells could be recognized by telomerase, allowing the Tage system to effectively kill cancer cells in vivo. The Tage system could effectively and safely realize its in vivo application by using adeno-associated virus (AAV) as gene vector. The virus-loaded Tage system could significantly and specifically kill cancer cells in mice by intravenous drug administration without side effects or toxicity.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Blackburn EH. Telomeres: do the ends justify the means? Cell. 1984;37:7–8.

    Article  CAS  Google Scholar 

  2. Blackburn EH. Structure and function of telomeres. Nature. 1991;350:569–73.

    Article  CAS  Google Scholar 

  3. Shampay J, Szostak JW, Blackburn EH. DNA sequences of telomeres maintained in yeast. Nature. 1984;310:154–7.

    Article  CAS  Google Scholar 

  4. Moyzis RK, Buckingham JM, Cram LS, Dani M, Deaven LL, Jones MD, et al. A highly conserved repetitive DNA sequence, (TTAGGG)n, present at the telomeres of human chromosomes. Proc Natl Acad Sci USA. 1988;85:6622–6.

    Article  CAS  Google Scholar 

  5. Williams TL, Levy DL, Maki-Yonekura S, Yonekura K, Blackburn EH. Characterization of the yeast telomere nucleoprotein core: Rap1 binds independently to each recognition site. J Biol Chem. 2010;285:35814–24.

    Article  CAS  Google Scholar 

  6. Martinez P, Blasco MA. Role of shelterin in cancer and aging. Aging Cell. 2010;9:653–66.

    Article  CAS  Google Scholar 

  7. Watson JD. Origin of concatemeric T7 DNA. Nat New Biol. 1972;239:197–201.

    Article  CAS  Google Scholar 

  8. Wright WE, Shay JW. Historical claims and current interpretations of replicative aging. Nat Biotechnol. 2002;20:682–8.

    Article  CAS  Google Scholar 

  9. Stewart SA, Bertuch AA. The role of telomeres and telomerase in cancer research. Cancer Res. 2010;70:7365–71.

    Article  CAS  Google Scholar 

  10. Aschacher T, Wolf B, Enzmann F, Kienzl P, Messner B, Sampl S, et al. LINE-1 induces hTERT and ensures telomere maintenance in tumour cell lines. Oncogene. 2016;35:94–104.

    Article  CAS  Google Scholar 

  11. Deng Y, Chang S. Role of telomeres and telomerase in genomic instability, senescence and cancer. Lab Invest. 2007;87:1071–6.

    Article  CAS  Google Scholar 

  12. Henson JD, Neumann AA, Yeager TR, Reddel RR. Alternative lengthening of telomeres in mammalian cells. Oncogene. 2002;21:598–610.

    Article  CAS  Google Scholar 

  13. Colgin LM, Baran K, Baumann P, Cech TR, Reddel RR. Human POT1 facilitates telomere elongation by telomerase. Curr Biol. 2003;13:942–6.

    Article  CAS  Google Scholar 

  14. Colgin LM, Reddel RR. Telomere maintenance mechanisms and cellular immortalization. Curr Opin Genet Dev. 1999;9:97–103.

    Article  CAS  Google Scholar 

  15. Maciejowski J, de Lange T. Telomeres in cancer: tumour suppression and genome instability. Nat Rev Mol Cell Biol. 2017;18:175–86.

    Article  CAS  Google Scholar 

  16. Wright WE, Piatyszek MA, Rainey WE, Byrd W, Shay JW. Telomerase activity in human germline and embryonic tissues and cells. Dev Genet. 1996;18:173–9.

    Article  CAS  Google Scholar 

  17. Shay JW, Wright WE. Role of telomeres and telomerase in cancer. Semin Cancer Biol. 2011;21:349–53.

    Article  CAS  Google Scholar 

  18. Huang FW, Hodis E, Xu MJ, Kryukov GV, Chin L, Garraway LA. Highly recurrent TERT promoter mutations in human melanoma. Science. 2013;339:957–9.

    Article  CAS  Google Scholar 

  19. Jafri MA, Ansari SA, Alqahtani MH, Shay JW. Roles of telomeres and telomerase in cancer, and advances in telomerase-targeted therapies. Genome Med. 2016;8:69.

    Article  Google Scholar 

  20. Mosoyan G, Kraus T, Ye F, Eng K, Crispino JD, Hoffman R, et al. Imetelstat, a telomerase inhibitor, differentially affects normal and malignant megakaryopoiesis. Leukemia. 2017;31:2458–67.

    Article  CAS  Google Scholar 

  21. Tefferi A, Lasho TL, Begna KH, Patnaik MM, Zblewski DL, Finke CM, et al. A pilot study of the telomerase inhibitor imetelstat for myelofibrosis. N Engl J Med. 2015;373:908–19.

    Article  CAS  Google Scholar 

  22. Khan FA, Pandupuspitasari NS, Chun-Jie H, Ao Z, Jamal M, Zohaib A, et al. CRISPR/Cas9 therapeutics: a cure for cancer and other genetic diseases. Oncotarget. 2016;7:52541–52.

    PubMed  PubMed Central  Google Scholar 

  23. Horvath P, Barrangou R. CRISPR/Cas, the immune system of bacteria and archaea. Science. 2010;327:167–70.

    Article  CAS  Google Scholar 

  24. Deltcheva E, Chylinski K, Sharma CM, Gonzales K, Chao Y, Pirzada ZA, et al. CRISPR RNA maturation by trans-encoded small RNA and host factor RNase III. Nature. 2011;471:602–7.

    Article  CAS  Google Scholar 

  25. Doudna JA, Charpentier E. Genome editing. The new frontier of genome engineering with CRISPR-Cas9. Science. 2014;346:1258096.

    Article  Google Scholar 

  26. Mali P, Yang L, Esvelt KM, Aach J, Guell M, DiCarlo JE, et al. RNA-guided human genome engineering via Cas9. Science. 2013;339:823–6.

    Article  CAS  Google Scholar 

  27. Bikard D, Euler CW, Jiang W, Nussenzweig PM, Goldberg GW, Duportet X, et al. Exploiting CRISPR-Cas nucleases to produce sequence-specific antimicrobials. Nat Biotechnol. 2014;32:1146–50.

    Article  CAS  Google Scholar 

  28. Samanta MK, Dey A, Gayen S. CRISPR/Cas9: an advanced tool for editing plant genomes. Transgenic Res. 2016;25:561–73.

    Article  CAS  Google Scholar 

  29. Niu Y, Shen B, Cui Y, Chen Y, Wang J, Wang L, et al. Generation of gene-modified cynomolgus monkey via Cas9/RNA-mediated gene targeting in one-cell embryos. Cell. 2014;156:836–43.

    Article  CAS  Google Scholar 

  30. Diede SJ, Gottschling DE. Telomerase-mediated telomere addition in vivo requires DNA primase and DNA polymerases alpha and delta. Cell. 1999;99:723–33.

    Article  CAS  Google Scholar 

  31. Kim NW, Piatyszek MA, Prowse KR, Harley CB, West MD, Ho PL, et al. Specific association of human telomerase activity with immortal cells and cancer. Science. 1994;266:2011–5.

    Article  CAS  Google Scholar 

  32. Stupp R, Hegi ME, Mason WP, van den Bent MJ, Taphoorn MJ, Janzer RC, et al. Effects of radiotherapy with concomitant and adjuvant temozolomide versus radiotherapy alone on survival in glioblastoma in a randomised phase III study: 5-year analysis of the EORTC-NCIC trial. Lancet Oncol. 2009;10:459–66.

    Article  CAS  Google Scholar 

  33. Sachdeva M, Sachdeva N, Pal M, Gupta N, Khan IA, Majumdar M, et al. CRISPR/Cas9: molecular tool for gene therapy to target genome and epigenome in the treatment of lung cancer. Cancer Gene Ther. 2015;22:509–17.

    Article  CAS  Google Scholar 

  34. Platt RJ, Chen S, Zhou Y, Yim MJ, Swiech L, Kempton HR, et al. CRISPR-Cas9 knockin mice for genome editing and cancer modeling. Cell. 2014;159:440–55.

    Article  CAS  Google Scholar 

  35. Xue W, Chen S, Yin H, Tammela T, Papagiannakopoulos T, Joshi NS, et al. CRISPR-mediated direct mutation of cancer genes in the mouse liver. Nature. 2014;514:380–4.

    Article  CAS  Google Scholar 

  36. Gasiunas G, Barrangou R, Horvath P, Siksnys V. Cas9-crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria. Proc Natl Acad Sci USA. 2012;109:E2579–86.

    Article  CAS  Google Scholar 

  37. Cong L, Ran FA, Cox D, Lin S, Barretto R, Habib N, et al. Multiplex genome engineering using CRISPR/Cas systems. Science. 2013;339:819–23.

    Article  CAS  Google Scholar 

  38. Jinek M, East A, Cheng A, Lin S, Ma E, Doudna J. RNA-programmed genome editing in human cells. eLife. 2013;2:e00471.

    Article  Google Scholar 

  39. Chavez A, Tuttle M, Pruitt BW, Ewen-Campen B, Chari R, Ter-Ovanesyan D, et al. Comparison of Cas9 activators in multiple species. Nat Methods. 2016;13:563–7.

    Article  CAS  Google Scholar 

  40. Banerjee B, Sherwood RI. A CRISPR view of gene regulation. Curr Opin Syst Biol. 2017;1:1–8.

    Article  Google Scholar 

  41. Dunbar CE, High KA, Joung JK, Kohn DB, Ozawa K, Sadelain M. Gene therapy comes of age. Science. 2018;359:1–10.

    Article  Google Scholar 

  42. George LA. Hemophilia gene therapy comes of age. Blood Adv. 2017;1:2591–9.

    Article  CAS  Google Scholar 

  43. Mendell JR, Al-Zaidy S, Shell R, Arnold WD, Rodino-Klapac LR, Prior TW, et al. Single-dose gene-replacement therapy for spinal muscular atrophy. N Engl J Med. 2017;377:1713–22.

    Article  CAS  Google Scholar 

  44. Valdmanis PN, Kay MA. Future of rAAV gene therapy: platform for RNAi, gene editing, and beyond. Hum Gene Ther. 2017;28:361–72.

    Article  CAS  Google Scholar 

  45. Nissim L, Wu MR, Pery E, Binder-Nissim A, Suzuki HI, Stupp D, et al. Synthetic RNA-based immunomodulatory gene circuits for cancer immunotherapy. Cell. 2017;171:1138–50 e15.

    Article  CAS  Google Scholar 

  46. Cawthon RM. Telomere measurement by quantitative PCR. Nucleic Acids Res. 2002;30:e47.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (61571119) and the National Key Research and Development Program of China (2017YFA0205502).

Author information

Authors and Affiliations

Authors

Contributions

JWang conceived the study and designed the experiments. WD designed and performed main experiments. XX, DW and JWu prepared reagents and performed partial experiments. JWang and WD wrote the manuscript with support from all authors.

Corresponding author

Correspondence to Jinke Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dai, W., Xu, X., Wang, D. et al. Cancer therapy with a CRISPR-assisted telomerase-activating gene expression system. Oncogene 38, 4110–4124 (2019). https://doi.org/10.1038/s41388-019-0707-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-019-0707-8

This article is cited by

Search

Quick links