Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Tspan8-β-catenin positive feedback loop promotes melanoma invasion

Abstract

Due to its high proclivity to metastasize, and despite the recent development of targeted and immune therapy strategies, melanoma is still the deadliest form of skin cancer. Therefore, understanding the molecular mechanisms underlying melanoma invasion remains crucial. We previously characterized Tspan8 for its ability to prompt melanoma cell detachment from their microenvironment and trigger melanoma cell invasiveness, but the signaling events by which Tspan8 regulates the invasion process still remain unknown. Here, we demonstrated that β-catenin stabilization is a molecular signal subsequent to the onset of Tspan8 expression, and that, in turn, β-catenin triggers the direct transcriptional activation of Tspan8 expression, leading to melanoma invasion. Moreover, we showed that β-catenin activation systematically correlates with a high expression of Tspan8 protein in melanoma lesions from transgenic Nras; bcat* mice, as well as in deep penetrating naevi, a type of human pre-melanoma neoplasm characterized by a combined activation of β-catenin and MAP kinase signaling. Overall, our data suggest that β-catenin and Tspan8 are part of a positive feedback loop, which sustains a high Tspan8 expression level, conferring to melanoma cells the invasive properties required for tumor progression and dissemination.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Shain AH, Bastian BC. The genetic evolution of melanoma. N Engl J Med. 2016;374:995–6.

    PubMed  Google Scholar 

  2. Luke JJ, Flaherty KT, Ribas A, Long GV. Targeted agents and immunotherapies: optimizing outcomes in melanoma. Nat Rev Clin Oncol. 2017;14:463–82.

    Article  CAS  Google Scholar 

  3. Szala S, Froehlich M, Scollon M, Kasai Y, Steplewski Z, Koprowski H, et al. Molecular cloning of cDNA for the carcinoma-associated antigen GA733-2. Proc Natl Acad Sci USA. 1990;87:3542–6.

    Article  CAS  Google Scholar 

  4. Hemler ME. Tetraspanin proteins promote multiple cancer stages. Nat Rev Cancer. 2014;14:49–60.

    Article  CAS  Google Scholar 

  5. Zoller M. Tetraspanins: push and pull in suppressing and promoting metastasis. Nat Rev Cancer. 2009;9:40–55.

    Article  Google Scholar 

  6. Pan SJ, Wu YB, Cai S, Pan YX, Liu W, Bian LG, et al. Over-expression of tetraspanin 8 in malignant glioma regulates tumor cell progression. Biochem Biophys Res Commun. 2015;458:476–82.

    Article  CAS  Google Scholar 

  7. Kanetaka K, Sakamoto M, Yamamoto Y, Yamasaki S, Lanza F, Kanematsu T, et al. Overexpression of tetraspanin CO-029 in hepatocellular carcinoma. J Hepatol. 2001;35:637–42.

    Article  CAS  Google Scholar 

  8. Bhansali M, Zhou J, Shemshedini L. TM4SF3 and AR: a nuclear complex that stabilizes both proteins. Mol Endocrinol. 2016;30:13–25.

    Article  CAS  Google Scholar 

  9. Zhou Z, Ran YL, Hu H, Pan J, Li ZF, Chen LZ, et al. TM4SF3 promotes esophageal carcinoma metastasis via upregulating ADAM12m expression. Clin Exp Metastas-. 2008;25:537–48.

    Article  CAS  Google Scholar 

  10. Greco C, Bralet MP, Ailane N, Dubart-Kupperschmitt A, Rubinstein E, Le Naour F, et al. E-cadherin/p120-catenin and tetraspanin Co-029 cooperate for cell motility control in human colon carcinoma. Cancer Res. 2010;70:7674–83.

    Article  CAS  Google Scholar 

  11. Guo Q, Xia B, Zhang F, Richardson MM, Li M, Zhang JS, et al. Tetraspanin CO-029 inhibits colorectal cancer cell movement by deregulating cell-matrix and cell-cell adhesions. PLoS One. 2012;7:e38464.

    Article  CAS  Google Scholar 

  12. Herlevsen M, Schmidt DS, Miyazaki K, Zoller M. The association of the tetraspanin D6.1A with the alpha6beta4 integrin supports cell motility and liver metastasis formation. J Cell Sci. 2003;116:4373–90.

    Article  CAS  Google Scholar 

  13. Berthier-Vergnes O, El Kharbili M, de la Fouchardiere A, Pointecouteau T, Verrando P, Wierinckx A, et al. Gene expression profiles of human melanoma cells with different invasive potential reveal TSPAN8 as a novel mediator of invasion. Br J Cancer. 2011;104:155–65.

    Article  CAS  Google Scholar 

  14. Gesierich S, Paret C, Hildebrand D, Weitz J, Zgraggen K, Schmitz-Winnenthal FH, et al. Colocalization of the tetraspanins, CO-029 and CD151, with integrins in human pancreatic adenocarcinoma: impact on cell motility. Clin Cancer Res. 2005;11:2840–52.

    Article  CAS  Google Scholar 

  15. Nazarenko I, Rana S, Baumann A, McAlear J, Hellwig A, Trendelenburg M, et al. Cell surface tetraspanin Tspan8 contributes to molecular pathways of exosome-induced endothelial cell activation. Cancer Res. 2010;70:1668–78.

    Article  CAS  Google Scholar 

  16. Yue S, Mu W, Erb U, Zoller M. The tetraspanins CD151 and Tspan8 are essential exosome components for the crosstalk between cancer initiating cells and their surrounding. Oncotarget. 2015;6:2366–84.

    PubMed  Google Scholar 

  17. Claas C, Seiter S, Claas A, Savelyeva L, Schwab M, Zoller M. Association between the rat homologue of CO-029, a metastasis-associated tetraspanin molecule and consumption coagulopathy. J Cell Biol. 1998;141:267–80.

    Article  CAS  Google Scholar 

  18. Kanetaka K, Sakamoto M, Yamamoto Y, Takamura M, Kanematsu T, Hirohashi S. Possible involvement of tetraspanin CO-029 in hematogenous intrahepatic metastasis of liver cancer cells. J Gastroenterol Hepatol. 2003;18:1309–14.

    Article  CAS  Google Scholar 

  19. Gesierich S, Berezovskiy I, Ryschich E, Zoller M. Systemic induction of the angiogenesis switch by the tetraspanin D6.1A/CO-029. Cancer Res. 2006;66:7083–94.

    Article  CAS  Google Scholar 

  20. Ailane N, Greco C, Zhu Y, Sala-Valdes M, Billard M, Casal I, et al. Effect of an anti-human Co-029/tspan8 mouse monoclonal antibody on tumor growth in a nude mouse model. Front Physiol. 2014;5:364.

    Article  Google Scholar 

  21. Park CS, Kim TK, Kim HG, Kim YJ, Jeoung MH, Lee WR, et al. Therapeutic targeting of tetraspanin8 in epithelial ovarian cancer invasion and metastasis. Oncogene. 2016;35:4540–8.

    Article  CAS  Google Scholar 

  22. Maisonial-Besset A, Witkowski T, Navarro-Teulon I, Berthier-Vergnes O, Fois G, Zhu Y, et al. Tetraspanin 8 (TSPAN 8) as a potential target for radio-immunotherapy of colorectal cancer. Oncotarget. 2017;8:22034–47.

    Article  Google Scholar 

  23. Rodia MT, Ugolini G, Mattei G, Montroni I, Zattoni D, Ghignone F, et al. Systematic large-scale meta-analysis identifies a panel of two mRNAs as blood biomarkers for colorectal cancer detection. Oncotarget. 2016;7:30295–306.

    Article  Google Scholar 

  24. Agaesse G, Barbollat-Boutrand L, Sulpice E, Bhajun R, El Kharbili M, Berthier-Vergnes O, et al. A large-scale RNAi screen identifies LCMR1 as a critical regulator of Tspan8-mediated melanoma invasion. Oncogene. 2017;36:446–57.

    Article  CAS  Google Scholar 

  25. Agaesse G, Barbollat-Boutrand L, El Kharbili M, Berthier-Vergnes O, Masse I. p53 targets TSPAN8 to prevent invasion in melanoma cells. Oncogenesis. 2017;6:e309.

    Article  CAS  Google Scholar 

  26. El Kharbili M, Robert C, Witkowski T, Danty-Berger E, Barbollat-Boutrand L, Masse I, et al. Tetraspanin 8 is a novel regulator of ILK-driven beta1 integrin adhesion and signaling in invasive melanoma cells. Oncotarget. 2017;8:17140–55.

    Article  Google Scholar 

  27. Delmas V, Beermann F, Martinozzi S, Carreira S, Ackermann J, Kumasaka M, et al. Beta-catenin induces immortalization of melanocytes by suppressing p16INK4a expression and cooperates with N-Ras in melanoma development. Genes Dev. 2007;21:2923–35.

    Article  CAS  Google Scholar 

  28. Gallagher SJ, Rambow F, Kumasaka M, Champeval D, Bellacosa A, Delmas V, et al. Beta-catenin inhibits melanocyte migration but induces melanoma metastasis. Oncogene. 2013;32:2230–8.

    Article  CAS  Google Scholar 

  29. Yeh I, Lang UE, Durieux E, Tee MK, Jorapur A, Shain AH, et al. Combined activation of MAP kinase pathway and beta-catenin signaling cause deep penetrating nevi. Nat Commun. 2017;8:644.

    Article  Google Scholar 

  30. Abe M, Sugiura T, Takahashi M, Ishii K, Shimoda M, Shirasuna K. A novel function of CD82/KAI-1 on E-cadherin-mediated homophilic cellular adhesion of cancer cells. Cancer Lett. 2008;266:163–70.

    Article  CAS  Google Scholar 

  31. Seubert B, Cui H, Simonavicius N, Honert K, Schafer S, Reuning U, et al. Tetraspanin CD63 acts as a pro-metastatic factor via beta-catenin stabilization. Int J Cancer. 2015;136:2304–15.

    Article  CAS  Google Scholar 

  32. Li L, Yang D, Cui D, Li Y, Nie Z, Wang J, et al. Quantitative proteomics analysis of the role of tetraspanin-8 in the drug resistance of gastric cancer. Int J Oncol. 2018;52:473–84.

    CAS  PubMed  Google Scholar 

  33. Chien AJ, Moore EC, Lonsdorf AS, Kulikauskas RM, Rothberg BG, Berger AJ, et al. Activated Wnt/beta-catenin signaling in melanoma is associated with decreased proliferation in patient tumors and a murine melanoma model. Proc Natl Acad Sci USA. 2009;106:1193–8.

    Article  CAS  Google Scholar 

  34. Arozarena I, Bischof H, Gilby D, Belloni B, Dummer R, Wellbrock C. In melanoma, beta-catenin is a suppressor of invasion. Oncogene. 2011;30:4531–43.

    Article  CAS  Google Scholar 

  35. Kageshita T, Hamby CV, Ishihara T, Matsumoto K, Saida T, Ono T. Loss of beta-catenin expression associated with disease progression in malignant melanoma. Br J Dermatol. 2001;145:210–6.

    Article  CAS  Google Scholar 

  36. Maelandsmo GM, Holm R, Nesland JM, Fodstad O, Florenes VA. Reduced beta-catenin expression in the cytoplasm of advanced-stage superficial spreading malignant melanoma. Clin Cancer Res. 2003;9:3383–8.

    CAS  PubMed  Google Scholar 

  37. Bachmann IM, Straume O, Puntervoll HE, Kalvenes MB, Akslen LA. Importance of P-cadherin, beta-catenin, and Wnt5a/frizzled for progression of melanocytic tumors and prognosis in cutaneous melanoma. Clin Cancer Res. 2005;11:8606–14.

    Article  CAS  Google Scholar 

  38. Rubinfeld B, Robbins P, El-Gamil M, Albert I, Porfiri E, Polakis P. Stabilization of beta-catenin by genetic defects in melanoma cell lines. Science. 1997;275:1790–2.

    Article  CAS  Google Scholar 

  39. Larue L, Delmas V. The WNT/Beta-catenin pathway in melanoma. Front Biosci. 2006;11:733–42.

    Article  CAS  Google Scholar 

  40. Conde-Perez A, Gros G, Longvert C, Pedersen M, Petit V, Aktary Z, et al. A caveolin-dependent and PI3K/AKT-independent role of PTEN in beta-catenin transcriptional activity. Nat Commun. 2015;6:8093.

    Article  CAS  Google Scholar 

  41. Eichhoff OM, Weeraratna A, Zipser MC, Denat L, Widmer DS, Xu M, et al. Differential LEF1 and TCF4 expression is involved in melanoma cell phenotype switching. Pigment Cell Melanoma Res. 2011;24:631–42.

    Article  CAS  Google Scholar 

  42. Murakami T, Toda S, Fujimoto M, Ohtsuki M, Byers HR, Etoh T, et al. Constitutive activation of Wnt/beta-catenin signaling pathway in migration-active melanoma cells: role of LEF-1 in melanoma with increased metastatic potential. Biochem Biophys Res Commun. 2001;288:8–15.

    Article  CAS  Google Scholar 

  43. Sinnberg T, Menzel M, Ewerth D, Sauer B, Schwarz M, Schaller M, et al. beta-Catenin signaling increases during melanoma progression and promotes tumor cell survival and chemoresistance. PLoS One. 2011;6:e23429.

    Article  CAS  Google Scholar 

  44. Damsky WE, Curley DP, Santhanakrishnan M, Rosenbaum LE, Platt JT, Gould Rothberg BE, et al. beta-catenin signaling controls metastasis in Braf-activated Pten-deficient melanomas. Cancer Cell. 2011;20:741–54.

    Article  CAS  Google Scholar 

  45. Grossmann AH, Yoo JH, Clancy J, Sorensen LK, Sedgwick A, Tong Z, et al. The small GTPase ARF6 stimulates beta-catenin transcriptional activity during WNT5A-mediated melanoma invasion and metastasis. Sci Signal. 2013;6:ra14.

    Article  Google Scholar 

  46. Aktary Z, Bertrand JU, Larue L. The WNT-less wonder: WNT-independent beta-catenin signaling. Pigment Cell Melanoma Res. 2016;29:524–40.

    Article  CAS  Google Scholar 

  47. Pan SJ, Zhan SK, Pan YX, Liu W, Bian LG, Sun B, et al. Tetraspanin 8-rictor-integrin alpha3 complex is required for glioma cell migration. Int J Mol Sci. 2015;16:5363–74.

    Article  Google Scholar 

  48. Cavard C, Terris B, Grimber G, Christa L, Audard V, Radenen-Bussiere B, et al. Overexpression of regenerating islet-derived 1 alpha and 3 alpha genes in human primary liver tumors with beta-catenin mutations. Oncogene. 2006;25:599–608.

    Article  CAS  Google Scholar 

  49. Le Naour F, Andre M, Greco C, Billard M, Sordat B, Emile JF, et al. Profiling of the tetraspanin web of human colon cancer cells. Mol Cell Proteom. 2006;5:845–57.

    Article  Google Scholar 

  50. Masse I, Barbollat-Boutrand L, Molina M, Berthier-Vergnes O, Joly-Tonetti N, Martin MT, et al. Functional interplay between p63 and p53 controls RUNX1 function in the transition from proliferation to differentiation in human keratinocytes. Cell Death Dis. 2012;3:e318.

    Article  CAS  Google Scholar 

  51. Delmas V, Martinozzi S, Bourgeois Y, Holzenberger M, Larue L. Cre-mediated recombination in the skin melanocyte lineage. Genesis. 2003;36:73–80.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Elise Malandain for technical assistance and Cyril Py for immunohistochemical processing. We thank C. Boucheix for the gift of TS29 monoclonal antibody.

Author contributions

IM and OBV conceived the idea and designed research. MEL, GA, LBB, OBV and IM performed experimental research. MEL, GA and LBB analyzed data under the supervision of IM and OBV. RMP performed bioinformatics analysis. ADLF provided tumor specimens and performed immunohistochemistry analyzes. LL performed mouse experiments. MEL, GA, JC and AP were involved in critical revision of the manuscript. IM and OBV prepared figures and wrote the paper.

Funding

This work was supported by a grant from the French Society for Dermatological Research (SRD), a grant from La Ligue Contre le Cancer (Comité Ardèche) and a grant from the association “Vaincre le Mélanome”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ingrid Masse.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

El Kharbili, M., Agaësse, G., Barbollat-Boutrand, L. et al. Tspan8-β-catenin positive feedback loop promotes melanoma invasion. Oncogene 38, 3781–3793 (2019). https://doi.org/10.1038/s41388-019-0691-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-019-0691-z

This article is cited by

Search

Quick links