Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Spironolactone inhibits the growth of cancer stem cells by impairing DNA damage response

Abstract

The cancer stem cell (CSC) model suggests that a subpopulation of cells within the tumor, the CSCs, is responsible for cancer relapse and metastasis formation. CSCs hold unique characteristics, such as self-renewal, differentiation abilities, and resistance to chemotherapy, raising the need for discovering drugs that target CSCs. Previously we have found that the antihypertensive drug spironolactone impairs DNA damage response in cancer cells. Here we show that spironolactone, apart from inhibiting cancerous cell growth, is also highly toxic to CSCs. Notably, we demonstrate that CSCs have high basal levels of DNA double-strand breaks (DSBs). Mechanistically, we reveal that spironolactone does not damage the DNA but impairs DSB repair and induces apoptosis in cancer cells and CSCs while sparing healthy cells. In vivo, spironolactone treatment reduced the size and CSC content of tumors. Overall, we suggest spironolactone as an anticancer reagent, toxic to both cancer cells and, particularly to, CSCs.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Rajanna A. Novel approach to target cancer stem cells for therapy. Med Hypotheses. 2016;88:83–5.

    Article  CAS  Google Scholar 

  2. Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144:646–74.

    Article  CAS  Google Scholar 

  3. Ferguson LR, Chen H, Collins AR, Connell M, Damia G, Dasgupta S, et al. Genomic instability in human cancer: Molecular insights and opportunities for therapeutic attack and prevention through diet and nutrition. Semin Cancer Biol. 2015;35:S5–24.

    Article  Google Scholar 

  4. Harper JW, Elledge SJ. The DNA damage response: ten years after. Mol Cell. 2007;28:739–45.

    Article  CAS  Google Scholar 

  5. Gavande NS, VanderVere-Carozza PS, Hinshaw HD, Jalal SI, Sears CR, Pawelczak KS, et al. DNA repair targeted therapy: The past or future of cancer treatment? Pharmacol Ther. 2016;160:65–83.

    Article  CAS  Google Scholar 

  6. Shahar OD, Kalousi A, Eini L, Fisher B, Weiss A, Darr J, et al. A high-throughput chemical screen with FDA approved drugs reveals that the antihypertensive drug Spironolactone impairs cancer cell survival by inhibiting homology directed repair. Nucleic Acids Res. 2014;42:5689–701.

    Article  CAS  Google Scholar 

  7. Alekseev S, Ayadi M, Brino L, Egly JM, Larsen AK, Coin F. A small molecule screen identifies an inhibitor of DNA repair inducing the degradation of TFIIH and the chemosensitization of tumor cells to platinum. Chem Biol. 2014;21:398–407.

    Article  CAS  Google Scholar 

  8. Leung WH, Vong QP, Lin W, Janke L, Chen T, Leung W. Modulation of NKG2D ligand expression and metastasis in tumors by spironolactone via RXRγ activation. J Exp Med. 2013;210:2675–92.

    Article  CAS  Google Scholar 

  9. Struthers A, Krum H, Williams GH. A comparison of the aldosterone-blocking agents eplerenone and spironolactone. Clin Cardiol. 2008;31:153–8.

    Article  Google Scholar 

  10. Funder JW. Mineralocorticoid receptor antagonists: emerging roles in cardiovascular medicine. Integr Blood Press Control. 2013;6:129–38.

    Article  CAS  Google Scholar 

  11. Baker M. Cancer stem cells, becoming common. Nat. Reports Stem Cells. 2008. https://doi.org/10.1038/stemcells.2008.153

  12. Bandhavkar S. Cancer stem cells: A metastasizing menace!. Cancer Med. 2016;5:649–55.

    Article  Google Scholar 

  13. Shaked Y. Balancing efficacy of and host immune responses to cancer therapy: the yin and yang effects. Nat Rev Clin Oncol. 2016;13:611–26.

    Article  CAS  Google Scholar 

  14. Clarke MF. Self-renewal and solid-tumor stem cells. Biol Blood Marrow Transplant. 2005;11:14–6.

    Article  Google Scholar 

  15. Peitzsch C, Tyutyunnykova A, Pantel K, Dubrovska A. Cancer stem cells: The root of tumor recurrence and metastases. Semin Cancer Biol. 2017;44:10–24.

    Article  CAS  Google Scholar 

  16. Scaffidi P, Misteli T. In vitro generation of human cells with cancer stem cell properties. Nat Cell Biol. 2011;13:1051–61.

    Article  CAS  Google Scholar 

  17. Campos B, Wan F, Farhadi M, Ernst A, Zeppernick F, Tagscherer KE, et al. Differentiation therapy exerts antitumor effects on stem-like glioma cells. Clin Cancer Res. 2010;16:2715–28.

    Article  CAS  Google Scholar 

  18. Torres CM, Torres CM, Biran A, Burney MJ, Patel H, Henser-Brownhill T, et al. The linker histone H1.0 generates epigenetic and functional intratumor heterogeneity. Science. 2016;353:aaf1644–1aaf1644-11.

    Article  CAS  Google Scholar 

  19. Singh SK, Hawkins C, Clarke ID, Squire JA, Bayani J, Hide T, et al. Identification of human brain tumour initiating cells. Nature. 2004;432:396–401.

    Article  CAS  Google Scholar 

  20. Dictus C, Tronnier V, Unterberg A, Herold-Mende C. Comparative analysis of in vitro conditions for rat adult neural progenitor cells. J Neurosci Methods. 2007;161:250–8.

    Article  CAS  Google Scholar 

  21. Biechonski S, Yassin M, Milyavsky M. DNA-damage response in hematopoietic stem cells: An evolutionary trade-off between blood regeneration and leukemia suppression. Carcinogenesis. 2017;38:367–77.

    Article  CAS  Google Scholar 

  22. Chadwick JA, Lowe J, Shaw JJ, Guttridge DC, Gomez-Sanchez CE, Gomez-Sanchez EP, et al. Mineralocorticoid receptors are present in skeletal muscle and represent a potential therapeutic target. FASEB J. 2015;29:4544–54.

    Article  CAS  Google Scholar 

  23. Lamb J. The Connectivity Map: a new tool for biomedical research. Nat Rev Cancer. 2007;7:54–60.

    Article  CAS  Google Scholar 

  24. Taghiyev AF, Guseva NV, Sturm MT, Rokhlin OW, Cohen MB. Trichostatin A (TSA) sensitizes the human prostatic cancer cell line DU145 to death receptor ligands treatment. Cancer Biol Ther. 2005;4:382–90.

    Article  CAS  Google Scholar 

  25. Choi YH. Induction of apoptosis by trichostatin A, a histone deacetylase inhibitor, is associated with inhibition of cyclooxygenase-2 activity in human non-small cell lung cancer cells. Int J Oncol. 2005;27:473–9.

    CAS  PubMed  Google Scholar 

  26. Ferreira JRO, Cavalcanti BC, da Costa PM, de Arantes FF, de Alvarenga ES, Maltha CR, et al. Induction of G2/M arrest, caspase activation and apoptosis by α-santonin derivatives in HL-60 cells. Toxicol Vitr. 2013;27:1458–66.

    Article  CAS  Google Scholar 

  27. Belmokhtar CA, Hillion J, Ségal-Bendirdjian E. Staurosporine induces apoptosis through both caspase-dependent and caspase-independent mechanisms. Oncogene. 2001;20:3354–62.

    Article  CAS  Google Scholar 

  28. Oliver FJ, de la Rubia G, Rolli V, Ruiz-Ruiz MC, de Murcia G, Murcia JM. Importance of poly(ADP-ribose) polymerase and its cleavage in apoptosis. Lesson from an uncleavable mutant. J Biol Chem. 1998;273:33533–9.

    Article  CAS  Google Scholar 

  29. Helleday T, Petermann E, Lundin C, Hodgson B, Sharma RA. DNA repair pathways as targets for cancer therapy. Nat Rev Cancer. 2008;8:193–204.

    Article  CAS  Google Scholar 

  30. Cheung-Ong K, Giaever G, Nislow C. DNA-damaging agents in cancer chemotherapy: serendipity and chemical biology. Chem Biol. 2013;20:648–59.

    Article  CAS  Google Scholar 

  31. Kotsantis P, Silva LM, Irmscher S, Jones RM, Folkes L, Gromak N. et al. Increased global transcription activity as a mechanism of replication stress in cancer. Nat Commun. 2016;7:13087.

    Article  Google Scholar 

  32. Bao S, Wu Q, McLendon RE, Hao Y, Shi Q, Hjelmeland AB. et al. Glioma stem cells promote radioresistance by preferential activation of the DNA damage response. Nature. 2006;444:756–60.

    Article  CAS  Google Scholar 

  33. Louka M, Boutou E, Bakou V, Pappa V, Georgoulis A, Stürzbecher HW et al. DNA damage response/repair in cancerstem cells — potential vs. controversies. In: Advances in DNA Repair. 2015. https://doi.org/10.5772/61355

  34. Chen Y, Li D, Wang D, Liu X, Yin N, Song Y, et al. Quiescence and attenuated DNA damage response promote survival of esophageal cancer stem cells. J Cell Biochem. 2012;113:3643–52.

    Article  CAS  Google Scholar 

  35. Chang CH, Zhang M, Rajapakshe K, Coarfa C, Edwards D, Huang S, et al. Mammary stem cells and tumor-initiating cells are more resistant to apoptosis and exhibit increased DNA repair activity in response to DNA damage. Stem Cell Rep. 2015;5:378–91.

    Article  CAS  Google Scholar 

  36. Yao X, Panichpisal K, Kurtzman N, Nugent K. Cisplatin nephrotoxicity: a review. Am J Med Sci. 2007;334:115–24.

    Article  Google Scholar 

  37. Chuang Y, Yu MC, Huang ST, Yang CK, Chen CH, Lo YC, et al. Spironolactone and the risk of urinary tract cancer in patients with hypertension. J Hypertens. 2017;35:170–7.

    Article  CAS  Google Scholar 

  38. Gardiner P, Schrode K, Quinlan D, Martin BK, Boreham DR, Rogers MS, et al. Spironolactone metabolism: steady-state serum levels of the sulfur-containing metabolites. J Clin Pharmacol. 1989;29:342–7.

    Article  CAS  Google Scholar 

  39. Lumb G, Newberne P, Rust JH, Wagner B. Effects in animals of chronic administration of spironolactone--a review. J Environ Pathol Toxicol. 1978;1:641–60.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank the members of our laboratory for supportive discussions and lab assistance: Paola Scaffidi and Thomas Mortimer for helping with the CSCL cell system; Christel Herold-Mende for providing us SLGCs; Yuval Dor and Elad Horwitz for comet assay assistance; Dan Sarni for software advice; Batsheva Kerem for providing healthy cells; Adva Biran and Uri Ben-David for CSC advice; Nissim Benvenisty for helpful advice and Evi Soutoglou for providing anti-XPB antibodies.

Funding

This work was supported by grant 1353/12 from the Israel Science Foundation and grant 20171152 from the Israel Cancer Association, with the generous assistance of Nancy and Peter Brown through the ICA USA to MG, and by grant 1140/17 from the Israel Science Foundation and CA180 from the DKFZ-MOST Collaboration to EM.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Eran Meshorer or Michal Goldberg.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gold, A., Eini, L., Nissim-Rafinia, M. et al. Spironolactone inhibits the growth of cancer stem cells by impairing DNA damage response. Oncogene 38, 3103–3118 (2019). https://doi.org/10.1038/s41388-018-0654-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-018-0654-9

This article is cited by

Search

Quick links