Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

ATDC mediates a TP63-regulated basal cancer invasive program

Abstract

Basal subtype cancers are deadly malignancies but the molecular events driving tumor lethality are not completely understood. Ataxia-telangiectasia group D complementing gene (ATDC, also known as TRIM29), is highly expressed and drives tumor formation and invasion in human bladder cancers but the factor(s) regulating its expression in bladder cancer are unknown. Molecular subtyping of bladder cancer has identified an aggressive basal subtype, which shares molecular features of basal/squamous tumors arising in other organs and is defined by activation of a TP63-driven gene program. Here, we demonstrate that ATDC is linked with expression of TP63 and highly expressed in basal bladder cancers. We find that TP63 binds to transcriptional regulatory regions of ATDC and KRT14 directly, increasing their expression, and that ATDC and KRT14 execute a TP63-driven invasive program. In vivo, ATDC is required for TP63-induced bladder tumor invasion and metastasis. These results link TP63 and the basal gene expression program to ATDC and to aggressive tumor behavior. Defining ATDC as a molecular determinant of aggressive, basal cancers may lead to improved biomarkers and therapeutic approaches.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2016. CA Cancer J Clin. 2016;66:7–30. https://doi.org/10.3322/caac.21332.

    Article  PubMed  Google Scholar 

  2. Network, T. C. G. A. R. Comprehensive molecular characterization of urothelial bladder carcinoma. Nature https://doi.org/10.1038/nature12965 (2014).

  3. Damrauer JS, et al. Intrinsic subtypes of high-grade bladder cancer reflect the hallmarks of breast cancer biology. Proc Natl Acad Sci USA. 2014;111:3110–5. https://doi.org/10.1073/pnas.1318376111.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Choi W, et al. Identification of distinct basal and luminal subtypes of muscle-invasive bladder cancer with different sensitivities to frontline chemotherapy. Cancer Cell. 2014;25:152–65. https://doi.org/10.1016/j.ccr.2014.01.009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Hedegaard J, et al. Comprehensive transcriptional analysis of early-stage urothelial carcinoma. Cancer Cell. 2016;30:27–42. https://doi.org/10.1016/j.ccell.2016.05.004.

    Article  CAS  PubMed  Google Scholar 

  6. Sjödahl G, et al. A molecular taxonomy for urothelial carcinoma. Clin Cancer Res. 2012;18:3377–86. https://doi.org/10.1158/1078-0432.CCR-12-0077-T.

    Article  PubMed  Google Scholar 

  7. Lerner SP, et al. Bladder cancer molecular taxonomy: summary from a consensus meeting. Bladder Cancer. 2016;2:37–47. https://doi.org/10.3233/BLC-150037.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Choi W, et al. Genetic alterations in the molecular subtypes of bladder cancer: illustration in the cancer genome atlas dataset. Eur Urol. 2017;72:354–65. https://doi.org/10.1016/j.eururo.2017.03.010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Robertson AG, et al. Comprehensive molecular characterization of muscle-invasive bladder cancer. Cell. 2017;171:540 https://doi.org/10.1016/j.cell.2017.09.007. e525.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Sjodahl G, Eriksson P, Liedberg F, Hoglund M. Molecular classification of urothelial carcinoma: global mRNA classification versus tumour-cell phenotype classification. J Pathol. 2017;242:113–25. https://doi.org/10.1002/path.4886.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Hoadley KA, et al. Multiplatform analysis of 12 cancer types reveals molecular classification within and across tissues of origin. Cell. 2014;158:929–44. https://doi.org/10.1016/j.cell.2014.06.049.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Murray-Zmijewski F, Lane DP, Bourdon JC. p53/p63/p73 isoforms: an orchestra of isoforms to harmonise cell differentiation and response to stress. Cell Death Differ. 2006;13:962–72. https://doi.org/10.1038/sj.cdd.4401914.

    Article  CAS  PubMed  Google Scholar 

  13. Su X, Chakravarti D, Flores ER. p63 steps into the limelight: crucial roles in the suppression of tumorigenesis and metastasis. Nat Rev Cancer. 2013;13:136–43. https://doi.org/10.1038/nrc3446.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Karni-Schmidt O, et al. Distinct expression profiles of p63 variants during urothelial development and bladder cancer progression. Am J Pathol. 2011;178:1350–60. https://doi.org/10.1016/j.ajpath.2010.11.061.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Lai W, et al. Upregulated ataxia-telangiectasia group D complementing gene correlates with poor prognosis in patients with esophageal squamous cell carcinoma. Dis Esophagus. 2013;26:817–22. https://doi.org/10.1111/j.1442-2050.2012.01400.x.

    Article  CAS  PubMed  Google Scholar 

  16. Palmbos PL, et al. ATDC/TRIM29 drives invasive bladder cancer formation through miRNA-mediated and epigenetic mechanisms. Cancer Res. 2015;75:5155–66. https://doi.org/10.1158/0008-5472.CAN-15-0603.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Tang ZP, et al. Ataxia-telangiectasia Group D complementing gene (ATDC) promotes lung cancer cell proliferation by activating NF-κB pathway. PLoS ONE. 2013;8:e63676. https://doi.org/10.1371/journal.pone.0063676.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Wang L, et al. Oncogenic function of ATDC in pancreatic cancer through Wnt pathway activation and beta-catenin stabilization. Cancer Cell. 2009;15:207–19. S1535-6108(09)00027-0 [pii] 10.1016/j.ccr.2009.01.018.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Wang L, et al. ATDC induces an invasive switch in KRAS-induced pancreatic tumorigenesis. Genes Dev. 2015;29:171–83. https://doi.org/10.1101/gad.253591.114.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Qiu F, Xiong JP, Deng J, Xiang XJ. TRIM29 functions as an oncogene in gastric cancer and is regulated by miR-185. Int J Clin Exp Pathol. 2015;8:5053–61.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Dükel M, et al. The breast cancer tumor suppressor TRIM29 is expressed via ATM-dependent signaling in response to hypoxia. J Biol Chem. 2016;291:21541–52. https://doi.org/10.1074/jbc.M116.730960.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Guo GC, Wang JX, Han ML, Zhang LP, Li L. microRNA-761 induces aggressive phenotypes in triple-negative breast cancer cells by repressing TRIM29 expression. Cell Oncol. 2017;40:157–66. https://doi.org/10.1007/s13402-016-0312-6.

    Article  CAS  Google Scholar 

  23. Guo, G et al. Whole-genome and whole-exome sequencing of bladder cancer identifies frequent alterations in genes involved in sister chromatid cohesion and segregation. Nat Genet. https://doi.org/10.1038/ng.2798 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Cerami E, et al. The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data. Cancer Discov. 2012;2:401–4. https://doi.org/10.1158/2159-8290.CD-12-0095.

    Article  PubMed  Google Scholar 

  25. Gao J, et al. Integrative analysis of complex cancer genomics and clinical profiles using the cBioPortal. Sci Signal. 2013;6:pl1 https://doi.org/10.1126/scisignal.2004088.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Tamura S. et al. Molecular correlates of in vitro responses to dacomitinib and afatinib in bladder cancer. Bladder Cancer. 2018;4:77–90.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Hovelson, DH et al. Targeted DNA and RNA sequencing of paired urothelial and squamous bladder cancers reveals discordant genomic and transcriptomic events and unique therapeutic implications. Eur Urol. https://doi.org/10.1016/j.eururo.2018.06.047 (2018).

    Article  CAS  PubMed  Google Scholar 

  28. Choi W, et al. p63 expression defines a lethal subset of muscle-invasive bladder cancers. PLoS ONE. 2012;7:e30206 https://doi.org/10.1371/journal.pone.0030206.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. McDade SS, et al. Genome-wide analysis of p63 binding sites identifies AP-2 factors as co-regulators of epidermal differentiation. Nucleic Acids Res. 2012;40:7190–206. https://doi.org/10.1093/nar/gks389.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Kent WJ, et al. The human genome browser at UCSC. Genome Res. 2002;12:996–1006. https://doi.org/10.1101/gr.229102.. Article published online before print in May 2002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Candi E, et al. Differential roles of p63 isoforms in epidermal development: selective genetic complementation in p63 null mice. Cell Death Differ. 2006;13:1037–47. https://doi.org/10.1038/sj.cdd.4401926.

    Article  CAS  PubMed  Google Scholar 

  32. Masuda Y, Takahashi H, Hatakeyama S. TRIM29 regulates the p63-mediated pathway in cervical cancer cells. Biochim Biophys Acta. 2015;1853:2296–305. https://doi.org/10.1016/j.bbamcr.2015.05.035.

    Article  CAS  PubMed  Google Scholar 

  33. Cheung KJ, Gabrielson E, Werb Z, Ewald AJ. Collective invasion in breast cancer requires a conserved basal epithelial program. Cell. 2013;155:1639–51. https://doi.org/10.1016/j.cell.2013.11.029.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Wang, F, Chen, S, Liu, HB, Parent, CA, Coulombe. PA Keratin 6 regulates collective keratinocyte migration by altering cell–cell and cell–matrix adhesion. J Cell Biol. https://doi.org/10.1083/jcb.201712130 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Velez-delValle C, Marsch-Moreno M, Castro-Munozledo F, Galvan-Mendoza IJ, Kuri-Harcuch W. Epithelial cell migration requires the interaction between the vimentin and keratin intermediate filaments. Sci Rep. 2016;6:24389 https://doi.org/10.1038/srep24389.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Xu W, et al. RNA interference against TRIM29 inhibits migration and invasion of colorectal cancer cells. Oncol Rep. 2016;36:1411–8. https://doi.org/10.3892/or.2016.4941.

    Article  CAS  PubMed  Google Scholar 

  37. Wang, Y, Day, ML, Simeone, DM, Palmbos, PL. 3-D cell culture system for studying invasion and evaluating therapeutics in bladder cancer. J Vis Exp. https://doi.org/10.3791/58345 (2018).

  38. Seiler R, et al. Impact of molecular subtypes in muscle-invasive bladder cancer on predicting response and survival after neoadjuvant chemotherapy. Eur Urol. 2017. https://doi.org/10.1016/j.eururo.2017.03.030.

    Article  PubMed  Google Scholar 

  39. Lee SH, et al. The Dishevelled-binding protein CXXC5 negatively regulates cutaneous wound healing. J Exp Med. 2015;212:1061–80. https://doi.org/10.1084/jem.20141601.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Yuan Z, et al. The ATDC (TRIM29) protein binds p53 and antagonizes p53-mediated functions. Mol Cell Biol. 2010;30:3004–15. MCB.01023-09 [pii] 10.1128/MCB.01023-09.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Cai BH, et al. p53 acts as a co-repressor to regulate keratin 14 expression during epidermal cell differentiation. PLoS ONE. 2012;7:e41742. https://doi.org/10.1371/journal.pone.0041742.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Leivo MZ, Elson PJ, Tacha DE, Delahunt B, Hansel DE. A combination of p40, GATA-3 and uroplakin II shows utility in the diagnosis and prognosis of muscle-invasive urothelial carcinoma. Pathology. 2016;48:543–9. https://doi.org/10.1016/j.pathol.2016.05.008.

    Article  CAS  PubMed  Google Scholar 

  43. Gaya JM, et al. ΔNp63 expression is a protective factor of progression in clinical high grade T1 bladder cancer. J Urol. 2015;193:1144–50. https://doi.org/10.1016/j.juro.2014.10.098.

    Article  CAS  PubMed  Google Scholar 

  44. Han AL, et al. Fibulin-3 promotes muscle-invasive bladder cancer. Oncogene. 2017. https://doi.org/10.1038/onc.2017.149.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Andrew Ewald for assistance with the 3D invasion and imaging systems used in this study.

Funding

This work was funded by grants from the University of Michigan Cancer Center Core Grant CA046592-26S3, NIH K08 CA201335 (PLP), BCAN YIA (PLP), ASCO YIA (PLP), and NIH R01 CA17483601 (DMS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Phillip L. Palmbos.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Palmbos, P.L., Wang, Y., Bankhead III, A. et al. ATDC mediates a TP63-regulated basal cancer invasive program. Oncogene 38, 3340–3354 (2019). https://doi.org/10.1038/s41388-018-0646-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-018-0646-9

This article is cited by

Search

Quick links