Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Genome-wide screening identifies oncofetal lncRNA Ptn-dt promoting the proliferation of hepatocellular carcinoma cells by regulating the Ptn receptor

Abstract

Oncofetal genes are genes that express abundantly in both fetal and tumor tissues yet downregulated or undetected in adult tissues, and can be used as tumor markers for cancer diagnosis and treatment. Meanwhile, long noncoding RNAs (lncRNAs) are known to play crucial roles in the pathogenesis of hepatocellular carcinoma (HCC), including tumor growth, proliferation, metastasis, invasion, and recurrence. We performed a genome-wide screening using microarrays to detect the lncRNA expression profiles in fetal livers, adult livers, and liver cancer tissues from mice to identify oncofetal lncRNAs in HCC. From the microarray data analysis, we identified lncRNA Ptn-dt as a possible oncofetal gene. Both in vitro and in vivo experiments results confirmed that overexpression of Ptn-dt significantly promoted the proliferation of mouse HCC cells. RNA pulldown assay showed that Ptn-dt could interact with the HuR protein. Interestingly, miR-96 binds with HuR to maintain its stability as well. Overexpression of lncRNA Ptn-dt led to the downregulation of miR-96, which might be due to the interaction between Ptn-dt and HuR. Meanwhile, previous studies have reported that Ptn can promote tumor growth and vascular abnormalization via anaplastic lymphoma kinase (Alk) signaling. In our study, we found that overexpression of Ptn-dt could promote the expression of Alk through repressing miR-96 via interacting with HuR, thus enhancing the biologic function of Ptn. In summary, a new oncofetal lncRNA Ptn-dt is identified, and it can promote the proliferation of HCC cells by regulating the HuR/miR-96/Alk pathway and Ptn-Alk axis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2016. CA Cancer J Clin. 2016;66:7–30.

    Article  Google Scholar 

  2. Venook AP, Papandreou C, Furuse J, de Guevara LL. The incidence and epidemiology of hepatocellular carcinoma: a global and regional perspective. Oncologist. 2010;15(Suppl 4):5–13.

    Article  Google Scholar 

  3. Iavarone M, Cabibbo G, Biolato M, Della Corte C, Maida M, Barbara M, et al. Predictors of survival in patients with advanced hepatocellular carcinoma who permanently discontinued sorafenib. Hepatology. 2015;62:784–91.

    Article  CAS  Google Scholar 

  4. Coulouarn C, Derambure C, Lefebvre G, Daveau R, Hiron M, Scotte M, et al. Global gene repression in hepatocellular carcinoma and fetal liver, and suppression of dudulin-2 mRNA as a possible marker for the cirrhosis-to-tumor transition. J Hepatol. 2005;42:860–9.

    Article  CAS  Google Scholar 

  5. Liu H, Kho AT, Kohane IS, Sun Y. Predicting survival within the lung cancer histopathological hierarchy using a multi-scale genomic model of development. PLoS Med. 2006;3:e232.

    Article  Google Scholar 

  6. Hu M, Shivdasani RA. Overlapping gene expression in fetal mouse intestine development and human colorectal cancer. Cancer Res. 2005;65:8715–22.

    Article  CAS  Google Scholar 

  7. Yamauchi N, Watanabe A, Hishinuma M, Ohashi K, Midorikawa Y, Morishita Y, et al. The glypican 3 oncofetal protein is a promising diagnostic marker for hepatocellular carcinoma. Mod Pathol. 2005;18:1591–8.

    Article  CAS  Google Scholar 

  8. Zhang Y, Yang J, Li H, Wu Y, Zhang H, Chen W. Tumor markers CA19-9, CA242 and CEA in the diagnosis of pancreatic cancer: a meta-analysis. Int J Clin Exp Med. 2015;8:11683–91.

    PubMed  PubMed Central  Google Scholar 

  9. Becker D, Sfakianakis I, Krupp M, Staib F, Gerhold-Ay A, Victor A, et al. Genetic signatures shared in embryonic liver development and liver cancer define prognostically relevant subgroups in HCC. Mol Cancer. 2012;11:55.

    Article  CAS  Google Scholar 

  10. Bergstrand CG, Czar B. Demonstration of a new protein fraction in serum from the human fetus. Scand J Clin Lab Invest. 1956;8:174.

    Article  CAS  Google Scholar 

  11. Yong KJ, Gao C, Lim JS, Yan B, Yang H, Dimitrov T, et al. Oncofetal gene SALL4 in aggressive hepatocellular carcinoma. N Eng J Med. 2013;368:2266–76.

    Article  CAS  Google Scholar 

  12. Quinn JJ, Chang HY. Unique features of long non-coding RNA biogenesis and function. Nat Rev Genet. 2016;17:47–62.

    Article  CAS  Google Scholar 

  13. Schmitt AM, Chang HY. Long noncoding RNAs in cancer pathways. Cancer Cell. 2016;29:452–63.

    Article  CAS  Google Scholar 

  14. Raveh E, Matouk IJ, Gilon M, Hochberg A. The H19 long non-coding RNA in cancer initiation, progression and metastasis—a proposed unifying theory. Mol Cancer. 2015;14:184.

    Article  Google Scholar 

  15. Gupta RA, Shah N, Wang KC, Kim J, Horlings HM, Wong DJ, et al. Long non-coding RNA HOTAIR reprograms chromatin state to promote cancer metastasis. Nature. 2010;464:1071–6.

    Article  CAS  Google Scholar 

  16. Boyerinas B, Park SM, Shomron N, Hedegaard MM, Vinther J, Andersen JS, et al. Identification of let-7-regulated oncofetal genes. Cancer Res. 2008;68:2587–91.

    Article  CAS  Google Scholar 

  17. Wang F, Yuan JH, Wang SB, Yang F, Yuan SX, Ye C, et al. Oncofetal long noncoding RNA PVT1 promotes proliferation and stem cell-like property of hepatocellular carcinoma cells by stabilizing NOP2. Hepatology. 2014;60:1278–90.

    Article  CAS  Google Scholar 

  18. Zheng L, Gong W, Liang P, Huang X, You N, Han KQ, et al. Effects of AFP-activated PI3K/Akt signaling pathway on cell proliferation of liver cancer. Tumor Biol. 2014;35:4095–9.

    Article  CAS  Google Scholar 

  19. Srikantan S, Tominaga K, Gorospe M. Functional interplay between RNA-binding protein HuR and microRNAs. Curr Protein Pept Sci. 2012;13:372–9.

    Article  CAS  Google Scholar 

  20. Cao C, Sun J, Zhang D, Guo X, Xie L, Li X, et al. The long intergenic noncoding RNA UFC1, a target of MicroRNA 34a, interacts with the mRNA stabilizing protein HuR to increase levels of beta-catenin in HCC cells. Gastroenterology. 2015;148:415–26 e18.

    Article  CAS  Google Scholar 

  21. Hashiguchi Y, Nishida N, Mimori K, Sudo T, Tanaka F, Shibata K, et al. Down-regulation of miR-125a-3p in human gastric cancer and its clinicopathological significance. Int J Oncol. 2012;40:1477–82.

    CAS  PubMed  Google Scholar 

  22. Filipowicz W, Grosshans H. The liver-specific microRNA miR-122: biology and therapeutic potential. Progress Drug Res Fortschr der Arzneim Progres Des Rech Pharm. 2011;67:221–38.

    CAS  Google Scholar 

  23. Xu F, Zhang X, Lei Y, Liu X, Liu Z, Tong T, et al. Loss of repression of HuR translation by miR-16 may be responsible for the elevation of HuR in human breast carcinoma. J Cell Biochem. 2010;111:727–34.

    Article  CAS  Google Scholar 

  24. Vishwamitra D, Li Y, Wilson D, Manshouri R, Curry CV, Shi B, et al. MicroRNA 96 is a post-transcriptional suppressor of anaplastic lymphoma kinase expression. Am J Pathol. 2012;180:1772–80.

    Article  CAS  Google Scholar 

  25. Papadimitriou E, Mikelis C, Lampropoulou E, Koutsioumpa M, Theochari K, Tsirmoula S, et al. Roles of pleiotrophin in tumor growth and angiogenesis. Eur Cytokine Netw. 2009;20:180–90.

    CAS  PubMed  Google Scholar 

  26. Powers C, Aigner A, Stoica GE, Mcdonnell K, Wellstein A. Pleiotrophin signaling through anaplastic lymphoma kinase is rate-limiting for glioblastoma growth. J Biol Chem. 2002;277:14153–8.

    Article  CAS  Google Scholar 

  27. Rosenfield SM, Bowden ET, Cohen-Missner S, Gibby KA, Ory V, Henke RT, et al. Pleiotrophin (PTN) expression and function and in the mouse mammary gland and mammary epithelial cells. PLoS ONE. 2012;7:e47876.

    Article  CAS  Google Scholar 

  28. Kaur K, Wang X, Fields JK, Johnson DK, Lan L, Pratt M. et al. The fungal natural product azaphilone-9 binds to HuR and inhibits HuR-RNA interaction in vitro. PLoS ONE. 2017;12:e0175471

    Article  Google Scholar 

  29. Perezpinera P, Berenson JR, Deuel TF. Pleiotrophin, a multifunctional angiogenic factor: mechanisms and pathways in normal and pathological angiogenesis. Curr Opin Hematol. 2008;15:210–4.

    Article  CAS  Google Scholar 

  30. Zhang L, Dimberg A. Pleiotrophin is a driver of vascular abnormalization in glioblastoma. Mol Cell Oncol. 2016;3:e1141087.

    Article  Google Scholar 

  31. Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D. Global cancer statistics. CA Cancer J Clin. 2011;61:69–90.

    Article  Google Scholar 

  32. Ma Y, Zhang P, Wang F, Yang J, Yang Z, Qin H. The relationship between early embryo development and tumourigenesis. J Cell Mol Med. 2010;14:2697–701.

    Article  Google Scholar 

  33. Kotake Y, Nakagawa T, Kitagawa K, Suzuki S, Liu N, Kitagawa M, et al. Long non-coding RNA ANRIL is required for the PRC2 recruitment to and silencing ofp15(INK4B) tumor suppressor gene. Oncogene. 2011;30:1956–62.

    Article  CAS  Google Scholar 

  34. Majumdar A, Curley SA, Wu X, Brown P, Hwang JP, Shetty K, et al. Hepatic stem cells and transforming growth factor beta in hepatocellular carcinoma. Nat Rev Gastroenterol Hepatol. 2012;9:530–8.

    Article  CAS  Google Scholar 

  35. Wang S, Wu X, Liu Y, Yuan J, Yang F, Huang J, et al. Long noncoding RNA H19 inhibits the proliferation of fetal liver cells and the Wnt signaling pathway. FEBS Lett. 2016;590:559–70.

    Article  CAS  Google Scholar 

  36. Xu D, Yang F, Yuan JH, Zhang L, Bi HS, Zhou CC, et al. Long noncoding RNAs associated with liver regeneration 1 accelerates hepatocyte proliferation during liver regeneration by activating Wnt/β‐Catenin signaling. Hepatology. 2013;58:739.

    Article  CAS  Google Scholar 

  37. Michelotti GA, Tucker A, Swiderska-Syn M, Machado MV, Choi SS, Kruger L, et al. Pleiotrophin regulates the ductular reaction by controlling the migration of cells in liver progenitor niches. Gut. 2016;65:683–92.

    Article  CAS  Google Scholar 

  38. Park TJ, Jeong BR, Tateno C, Kim HS, Ogawa T, Lim IK, et al. Pleiotrophin inhibits transforming growth factor beta1-induced apoptosis in hepatoma cell lines. Mol Carcinog. 2008;47:784–96.

    Article  CAS  Google Scholar 

  39. Grzelinski M, Steinberg F, Martens T, Czubayko F, Lamszus K, Aigner A. Enhanced antitumorigenic effects in glioblastoma on double targeting of pleiotrophin and its receptor ALK. Neoplasia. 2009;11:145–56.

    Article  CAS  Google Scholar 

  40. Koutsioumpa M, Poimenidi E, Pantazaka E, Theodoropoulou C, Skoura A, Megalooikonomou V, et al. Receptor protein tyrosine phosphatase beta/zeta is a functional binding partner for vascular endothelial growth factor. Mol Cancer. 2015;14:19.

    Article  CAS  Google Scholar 

  41. Prensner JR, Iyer MK, Balbin OA, Dhanasekaran SM, Cao Q, Brenner JC, et al. Transcriptome sequencing across a prostate cancer cohort identifies PCAT-1, an unannotated lincRNA implicated in disease progression. Nat Biotechnol. 2011;29:742–9.

    Article  CAS  Google Scholar 

  42. Martens-Uzunova ES, Bottcher R, Croce CM, Jenster G, Visakorpi T, Calin GA. Long noncoding RNA in prostate, bladder, and kidney cancer. Eur Urol. 2014;65:1140–51.

    Article  CAS  Google Scholar 

  43. Cooper C, Guo J, Yan Y, Chooniedass-Kothari S, Hube F, Hamedani MK, et al. Increasing the relative expression of endogenous non-coding Steroid Receptor RNA Activator (SRA) in human breast cancer cells using modified oligonucleotides. Nucleic Acids Res. 2009;37:4518–31.

    Article  CAS  Google Scholar 

  44. Yoon JH, Abdelmohsen K, Srikantan S, Yang X, Martindale JL, De S, et al. LincRNA-p21 suppresses target mRNA translation. Mol Cell. 2012;47:648–55.

    Article  CAS  Google Scholar 

  45. Wilusz CJ, Wilusz J. HuR and translation—the missing linc(RNA). Mol Cell. 2012;47:495–6.

    Article  CAS  Google Scholar 

  46. Huang JF, Guo YJ, Zhao CX, Yuan SX, Wang Y, Tang GN, et al. Hepatitis B virus X protein (HBx)-related long noncoding RNA (lncRNA) down-regulated expression by HBx (Dreh) inhibits hepatocellular carcinoma metastasis by targeting the intermediate filament protein vimentin. Hepatology. 2013;57:1882–92.

    Article  CAS  Google Scholar 

  47. Ulitsky I, Bartel DP. lincRNAs: genomics, evolution, and mechanisms. Cell . 2013;154:26–46.

    Article  CAS  Google Scholar 

  48. Brennan CM, Steitz JA. HuR and mRNA stability. Cell Mol Life Sci: Cmls. 2001;58:266–77.

    Article  CAS  Google Scholar 

  49. Yuan JH, Yang F, Wang F, Ma JZ, Guo YJ, Tao QF, et al. A long noncoding RNA activated by TGF-beta promotes the invasion-metastasis cascade in hepatocellular carcinoma. Cancer Cell. 2014;25:666–81.

    Article  CAS  Google Scholar 

  50. Wang L, Park HJ, Dasari S, Wang S, Kocher J-P, Li W. CPAT: Coding-Potential Assessment Tool using an alignment-free logistic regression model. Nucleic Acids Res. 2013;41:e74–e.

    Article  CAS  Google Scholar 

  51. Kong L, Zhang Y, Ye Z-Q, Liu X-Q, Zhao S-Q, Wei L, et al. CPC: assess the protein-coding potential of transcripts using sequence features and support vector machine. Nucleic Acids Res. 2007;35(Web Server issue):W345–W9.

    Article  Google Scholar 

Download references

Acknowledgements

We thank Dr. Li Su for the help in flow cytometry technique, and the Institutional Animal Care and Use Committee (the Second Military Medical University, Shanghai, China) for the ethics approval of animal studies. Some elements of Fig. 6 are from LES LABORATOIRES SERVIER. This work was supported by grants from the National Key Basic Research Program (973 project) (2015CB554004) from the Ministry of Science and Technology of China, the National Natural Science Foundation of China (81672775 and 81330037) and the Natural Science Foundation of Shanghai (15XD1504500).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Li-Ye Ma, Hui-Rong Yin or Fang Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, JF., Jiang, HY., Cai, H. et al. Genome-wide screening identifies oncofetal lncRNA Ptn-dt promoting the proliferation of hepatocellular carcinoma cells by regulating the Ptn receptor. Oncogene 38, 3428–3445 (2019). https://doi.org/10.1038/s41388-018-0643-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-018-0643-z

This article is cited by

Search

Quick links